Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 29(7): 929-932, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30773432

ABSTRACT

In the course of a programme aimed at identifying Nurr1/NOT agonists for potential treatment of Parkinson's disease, a few hits from high throughput screening were identified and characterized. A combined optimization pointed to a very narrow and stringent structure activity relationship. A comprehensive program of optimization led to a potent and safe candidate drug displaying neuroprotective and anti-inflammatory activity in several in vitro and in vivo models.


Subject(s)
Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Parkinson Disease/drug therapy , Animals , Cell Line , Cricetinae , Drug Discovery , Gene Expression Regulation/drug effects , Homeodomain Proteins/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Microglia/drug effects , Molecular Structure , Neurons/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Rats , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism
2.
Brain ; 139(Pt 6): 1762-82, 2016 06.
Article in English | MEDLINE | ID: mdl-27084575

ABSTRACT

The p75 neurotrophin receptor is important in multiple physiological actions including neuronal survival and neurite outgrowth during development, and after central nervous system injury. We have discovered a novel piperazine-derived compound, EVT901, which interferes with p75 neurotrophin receptor oligomerization through direct interaction with the first cysteine-rich domain of the extracellular region. Using ligand binding assays with cysteine-rich domains-fused p75 neurotrophin receptor, we confirmed that EVT901 interferes with oligomerization of full-length p75 neurotrophin receptor in a dose-dependent manner. Here we report that EVT901 reduces binding of pro-nerve growth factor to p75 neurotrophin receptor, blocks pro-nerve growth factor induced apoptosis in cells expressing p75 neurotrophin receptor, and enhances neurite outgrowth in vitro Furthermore, we demonstrate that EVT901 abrogates p75 neurotrophin receptor signalling by other ligands, such as prion peptide and amyloid-ß. To test the efficacy of EVT901 in vivo, we evaluated the outcome in two models of traumatic brain injury. We generated controlled cortical impacts in adult rats. Using unbiased stereological analysis, we found that EVT901 delivered intravenously daily for 1 week after injury, reduced lesion size, protected cortical neurons and oligodendrocytes, and had a positive effect on neurological function. After lateral fluid percussion injury in adult rats, oral treatment with EVT901 reduced neuronal death in the hippocampus and thalamus, reduced long-term cognitive deficits, and reduced the occurrence of post-traumatic seizure activity. Together, these studies provide a new reagent for altering p75 neurotrophin receptor actions after injury and suggest that EVT901 may be useful in treatment of central nervous system trauma and other neurological disorders where p75 neurotrophin receptor signalling is affected.


Subject(s)
Oligodendroglia/drug effects , Piperazines/pharmacology , Receptor, Nerve Growth Factor/antagonists & inhibitors , Animals , Apoptosis/drug effects , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cell Count , Cell Proliferation/drug effects , Cells, Cultured , Demyelinating Diseases/pathology , Dose-Response Relationship, Drug , Humans , Male , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oligodendroglia/metabolism , Phosphorylation/drug effects , Primary Cell Culture , Radioligand Assay , Rats , Receptor, Nerve Growth Factor/biosynthesis , Receptor, trkA/metabolism , Recovery of Function
3.
J Neuroinflammation ; 13(1): 88, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102880

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) results in long-term neurological deficits, which may be mediated in part by pro-inflammatory responses in both the injured brain and the circulation. Inflammation may be involved in the subsequent development of neurodegenerative diseases and post-injury seizures. The p75 neurotrophin receptor (p75NTR) has multiple biological functions, affecting cell survival, apoptotic cell death, axonal growth, and degeneration in pathological conditions. We recently found that EVT901, a novel piperazine derivative that inhibits p75NTR oligomerization, is neuroprotective, reduces microglial activation, and improves outcomes in two models of TBI in rats. Since TBI elicits both CNS and peripheral inflammation, we used a mouse model of TBI to examine whether EVT901 would affect peripheral immune responses and trafficking to the injured brain. METHODS: Cortical contusion injury (CCI)-TBI of the sensory/motor cortex was induced in C57Bl/6 wild-type mice and CCR2(+/RFP) heterozygote transgenic mice, followed by treatment with EVT901, a selective antagonist of p75NTR, or vehicle by i.p. injection at 4 h after injury and then daily for 7 days. Brain and blood were collected at 1 and 6 weeks after injury. Flow cytometry and histological analysis were used to determine peripheral immune responses and trafficking of peripheral immune cells into the lesion site at 1 and 6 weeks after TBI. A battery of behavioral tests administered over 6 weeks was used to evaluate neurological outcome, and stereological estimation of brain tissue volume at 6 weeks was used to assess tissue damage. Finally, multivariate principal components analysis (PCA) was used to evaluate the relationships between inflammatory events, EVT901 treatment, and neurological outcomes. RESULTS: EVT901 is neuroprotective in mouse CCI-TBI and dramatically reduced the early trafficking of CCR2+ and pro-inflammatory monocytes into the lesion site. EVT901 reduced the number of CD45(high)CD11b+ and CD45(high)F4/80+ cells in the injured brain at 6 weeks. TBI produced a significant increase in peripheral pro-inflammatory monocytes (Ly6C(int-high) pro-inflammatory monocytes), and this peripheral effect was also blocked by EVT901 treatment. Further, we found that blocking p75NTR with EVT901 reduces the expansion of pro-inflammatory monocytes, and their response to LPS in vitro, supporting the idea that there is a peripheral EVT901 effect that blunts inflammation. Further, 1 week of EVT901 blocks the expansion of pro-inflammatory monocytes in the circulation after TBI, reduces the number of multiple subsets of pro-inflammatory monocytes that enter the injury site at 1 and 6 weeks post-injury, and is neuroprotective, as it was in the rat. CONCLUSIONS: Together, these findings suggest that p75NTR signaling participates in the production of the peripheral pro-inflammatory response to CNS injury and implicates p75NTR as a part of the pro-inflammatory cascade. Thus, the neuroprotective effects of p75NTR antagonists might be due to a combination of central and peripheral effects, and p75NTR may play a role in the production of peripheral inflammation in addition to its many other biological roles. Thus, p75NTR may be a therapeutic target in human TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Monocytes/pathology , Neuroprotective Agents/pharmacology , Piperazines/pharmacology , Receptor, Nerve Growth Factor/metabolism , Recovery of Function/drug effects , Animals , Brain Injuries, Traumatic/pathology , Cell Movement/drug effects , Disease Models, Animal , Flow Cytometry , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic
4.
Eur J Nucl Med Mol Imaging ; 38(3): 509-14, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20936410

ABSTRACT

PURPOSE: Neuroinflammation is involved in neurological disorders through the activation of microglial cells. Imaging of neuroinflammation with radioligands for the translocator protein (18 kDa) (TSPO) could prove to be an attractive biomarker for disease diagnosis and therapeutic evaluation. The indoleacetamide-derived 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, SSR180575, is a selective high-affinity TSPO ligand in human and rodents with neuroprotective effects. METHODS: Here we report the radiolabelling of SSR180575 with (11)C and in vitro and in vivo imaging in an acute model of neuroinflammation in rats. RESULTS: The image contrast and the binding of [(11)C]SSR180575 are higher than that obtained with the isoquinoline-based TSPO radioligand, [(11)C]PK11195. Competition studies demonstrate that [(11)C]SSR180575 has high specific binding for the TSPO. CONCLUSION: [(11)C]SSR180575 is the first PET radioligand for the TSPO based on an indoleacetamide scaffold designed for imaging neuroinflammation in animal models and in the clinic.


Subject(s)
Acetamides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carrier Proteins/metabolism , Indoles/metabolism , Positron-Emission Tomography/methods , Receptors, GABA-A/metabolism , Animals , Autoradiography , Carbon Radioisotopes , Inflammation/diagnostic imaging , Inflammation/metabolism , Inflammation/pathology , Ligands , Radiochemistry , Rats
5.
J Neurochem ; 83(3): 645-54, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12390526

ABSTRACT

The main purpose of this study was to characterize the initial neurotransmission cascade elicited by methamphetamine, analysing simultaneously with in vivo microdialysis monoamine, amino acid and neuropeptide release in substantia nigra and neostriatum of the rat. The main effect of a single systemic dose of methamphetamine (15 mg/kg, subcutaneously) was an increase in dopamine levels, both in substantia nigra ( approximately 10-fold) and neostriatum ( approximately 40-fold), accompanied by a significant, but lesser, increase in dynorphin B ( approximately two-fold, in both regions), and a decrease in monoamine metabolites. A similar effect was also observed after local administration of methamphetamine (100 microm) via the microdialysis probes, but restricted to the treated region. In other experiments, rats were repeatedly treated with methamphetamine or saline, with the last dose administered 12 h before microdialysis. Dopamine K+-stimulated release was decreased following repeated methamphetamine administration compared with that following saline, both in the substantia nigra (by approximately 65%) and neostriatum (by approximately 20%). In contrast, the effect of K+-depolarization on glutamate, aspartate and GABA levels was increased following repeated administration of methamphetamine. In conclusion, apart from an impairment of monoamine neurotransmission, repeated methamphetamine produces changes in amino acid homeostasis, probably leading to NMDA-receptor overstimulation.


Subject(s)
Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Neostriatum/metabolism , Neurotransmitter Agents/metabolism , Substantia Nigra/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Animals , Aspartic Acid/analysis , Aspartic Acid/metabolism , Biogenic Monoamines/analysis , Biogenic Monoamines/metabolism , Dopamine/analysis , Dopamine/metabolism , Drug Administration Routes , Drug Administration Schedule , Dynorphins/analysis , Dynorphins/metabolism , Endorphins/analysis , Endorphins/metabolism , Extracellular Space/chemistry , Extracellular Space/metabolism , Glutamic Acid/analysis , Glutamic Acid/metabolism , Male , Microdialysis , Neostriatum/drug effects , Neurotransmitter Agents/analysis , Potassium/pharmacology , Rats , Rats, Sprague-Dawley , Substantia Nigra/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...