Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(8): 2204-2208, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29327792

ABSTRACT

Multi-block polymers are highly desirable for their addressable functions that are both unique and complementary among the blocks. With metal-containing polymers, the goal is even more challenging insofar as the metal properties may considerably extend the materials functions to sensing, catalysis, interaction with metal nanoparticles, and electro- or photochrome switching. Ring-opening metathesis polymerization (ROMP) has become available for the formation of living polymers using highly efficient initiators such as the 3rd generation Grubbs catalyst [RuCl2 (NHC)(=CHPh)(3-Br-C5 H4 N)2 ], 1. Among the 24 possibilities to introduce 4 blocks of metallopolymers into a tetrablock metallocopolymer by ROMP using the catalyst 1, two viable pathways are disclosed. The synthesis, characterization, electrochemistry, electron-transfer chemistry, and remarkable electrochromic properties of these new nanomaterials are presented.

2.
Macromol Rapid Commun ; 37(7): 630-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26841204

ABSTRACT

Diblock metallopolymer polyelectrolytes containing the two redox-robust cationic sandwich units [CoCp'Cp](+) and [FeCp'(η(6)-C6 Me6)](+) (Cp = η(5)-C5 H5; Cp' = η(5)-C5H4-) as hexafluorophosphate ([PF6](-)) salts are synthesized by ring-opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard-Anson's electrochemical method by cyclic voltammetry.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Iron/chemistry , Polymers/chemistry , Catalysis , Cations/chemistry , Electrochemical Techniques , Ferrous Compounds/chemistry , Magnetic Resonance Spectroscopy , Metallocenes , Oxidation-Reduction , Polymers/chemical synthesis , Spectrophotometry
3.
Macromol Rapid Commun ; 37(1): 105-111, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26592969

ABSTRACT

Using the third-generation Grubbs catalyst, the living ring-opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard-Anson electrochemical method to determine the number of metallocenyl units in each block.

4.
Chemistry ; 21(50): 18177-86, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26494439

ABSTRACT

We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

SELECTION OF CITATIONS
SEARCH DETAIL
...