Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Dairy Res ; : 1-3, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39397753

ABSTRACT

The work reported in the Research Communication investigated in vitro rumen gas kinetics and fermentation profile as well as in vivo performance of lactating ewes fed corn silage (CS), sunflower silage (SFS) and their 50 : 50 mixture (CS-SFS). For the in vivo experiment, nine early-lactation Suffolk × Texel ewes were grouped in a replicated 3 × 3 Latin square design of three 21-d periods. Treatments were based on ad libitum CS, SFS, and CS-SFS supplemented with concentrate at 48 g/kg LW0.75. In vitro results showed that the CS had the highest dry matter degraded substrate and microbial crude protein production followed by CS-SFS. The in vivo data showed that animals fed on CS had higher digestibility of dry matter and organic matter than CS-SFS, while SFS were intermediate. Nitrogen (N) intake, fecal N excretion, and urine N excretion were similar between groups, however, milk N excretion was lower in SFS than CS. Milk yield was higher for CS and CS-SFS than SFS group, however, SFS-fed ewes had higher milk fat content than either CS or CS-SFS (all differences reported here were significant, P < 0.05 or better). Overall, CS-SFS could be used as dietary roughage for dairy ewes without deleterious effects on nutrient intake, N-balance and milk yield whilst potentially offering a more sustainable alternative to CS.

2.
PLoS One ; 19(4): e0300864, 2024.
Article in English | MEDLINE | ID: mdl-38635849

ABSTRACT

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Subject(s)
Cucurbita , Animals , Female , Sheep , Cucurbita/metabolism , Lactation , Salvia hispanica , Detergents , Dietary Fiber/metabolism , Diet/veterinary , Seeds/metabolism , Digestion , Animal Feed/analysis , Zea mays/metabolism , Dietary Supplements/analysis , Rumen/metabolism
3.
Front Vet Sci ; 9: 980619, 2022.
Article in English | MEDLINE | ID: mdl-36311670

ABSTRACT

Mexico has many agricultural by-products that can be used for animal feed, and green tomatoes are produced throughout the country and can be an alternative to overcome the high prices of cereal-based feeds. This study determined in vitro fermentation kinetics, production performance, nutrient intake, digestibility, and nitrogen balance from sheep supplemented with whole plant green tomato (GT) on corn silage (CS) based diets. For 21 days, eighteen Suffolk lambs (38 ± 4 kg of live weight) were grouped into three dietary GT inclusion levels to replace CS: a control diet based on 100% CS (GT0, 570 g /kg dry matter, DM), while 100 g/kg DM (GT100) and 200 g/kg DM (GT200) of GT were included as a replacement for CS. A completely randomized design was used to measure in vitro gas production, in vitro rumen fermentation, chemical composition, and in vivo parameters. In vitro gas production, "A" (ml/g DM), fermentation rates "B," (h-1), and "C" (h-½), were lower for GT200, while DM disappearance (mg/100mg) was lower for GT100 compared with GT0. Compared to GT0, GT100 and GT200 did not affect (P > 0.05) DM and organic matter (OM) intake (g/kgLW0.75). Ether extract intake was higher for GT0 and GT100 (P < 0.001) compared to GT200. Neutral detergent fiber (NDF) intake was higher (P < 0.05) for GT200 compared with GT0. Intake of lignin was higher (P < 0.001) for GT200 than that of GT0 and GT100. Digestibility coefficients for DM, OM, NDF, and Acid detergent fiber (ADF) were lower (P < 0.05) in GT100 than in the rest of the treatments. Nitrogen intake and N excreted in feces and urine were lower (P < 0.001) for GT0. N balance was negative for all treatments, being higher for GT200 (P < 0.05). Overall, the addition of GT at 100 or 200 g/kg DM in sheep diets negatively affects nutrient digestibility and N balance, so their dietary inclusion is not recommended.

4.
Animals (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35011166

ABSTRACT

The use of antibiotics in animal production are widely used for disease treatment, health protection, and as growth promoters. Common antibiotics used in veterinary medicine are excreted and eliminated through the sewage system, contaminating water and soil with negative effects on agricultural activities. This systematic review focuses on the trend of research works on antibiotic residues, evaluating antibiotics used in livestock production and their excretion in animal products and in environmental matrices such as water and soil. Our database was composed of 165 articles, reporting the concentration of antibiotic residues found in the environment, livestock (cow, sheep, pig, horse, chicken, rabbit, goat), aquatic and terrestrial animal tissues, animal products (milk and eggs), wastewater, and soil. The documents were obtained from Asia, Africa, North America, South America, Europe, and Oceania. A descriptive analysis of antibiotic residues found worldwide was analyzed according to each of the variables used such as antibiotic family, name, concentration (% and mg/kg or ppm), and country and continent where the residue was found. The descriptive analysis was carried out using the "describe" function of psych package and pirate plots were drawn. According to our study, the main antibiotics used worldwide in animal production are sulfonamides, tetracyclines, quinolones, penicillin, and cephalosporins. At present, despite the trends of increased regulations on the use of antibiotics worldwide, antibiotics are still utilized in food animal production, and are present in water and soil, then, there is still the misuse of antibiotics in many countries. We need to become aware that antibiotic contamination is a global problem, and we are challenged to reduce and improve their use.

5.
Trop Anim Health Prod ; 45(3): 821-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23070686

ABSTRACT

Chemical composition, in vitro gas production with and without polyethyleneglycol (PEG-4000 MW), and in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) foliage from Pithecellobium dulce, Gliricidia sepium and Haematoxylum brasiletto were determined. The preference test was run for 15 days: the first 10 days as adaption period and the 5 days served as evaluation period. It was conducted in ten developing female Creole goats of 6 months old, weighing 14 ± 2.0 kg in order to determine goat preference for any of the three foliages. Productive performance of 35 male creole kids of 6 months old (14 ± 3.0 kg) was also determined by ad libitum feeding of the foliage of the tree: the 30 and 15 % of each of the P. dulce (T1, T2), G. sepium (T3, T4), and H. brasiletto (T5, T6) foliages were added to the experiment diets, while T7 served as control diet that did not contain any foliage. The crude protein (CP), total phenols (TP), condensed tannins (CT), IVDMD, and IVOMD were different among the foliages. The PEG determined the biological activity of the TP and CT of H. brasiletto. Goats preferred to consume the foliage of P. dulce because of its higher content of CP and IVDMD and low content of TP and CT. In the productive response, dry matter intake (DMI) was higher in kids fed T1 diet and was stimulated by higher IVDMD and IVOMD, which resulted in the higher daily weight gain (DWG). The contribution with TP and CT of H. brasiletto to T5 and T6 and the rejection by the animals of G. sepium in T3 and T4 explain the negative effects on the DMI and the DWG. Findings of the study suggested higher kid performance for P. dulce foliage. Possible attributes may include its better CP, low TP and CT, and higher digestibility.


Subject(s)
Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Fabaceae/chemistry , Feeding Behavior , Goats/physiology , Aging , Animals , Diet/veterinary , Digestion , Female , Goats/growth & development , Male , Mexico , Nutritive Value , Species Specificity , Trees/chemistry , Tropical Climate , Weight Gain
6.
Trop Anim Health Prod ; 44(2): 329-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22119887

ABSTRACT

Tropical grasses are the primary nutrient resource for cattle production in the tropics, and they provide low-cost nutrients to cattle. However, its production is constrained by seasonal changes and quality; hence, appropriate usage of relatively inexpensive agricultural by-products is important to profitable livestock production. The objective of the study was to evaluate the effect of supplementing coffee pulp to dairy cows grazing tropical grasses on milk yield and forage intake. Four multiparous crossed Holstein-Brown Swiss-Zebu cows of similar weight and milk yield were used. The effect of 10%, 15% and 20% inclusion of coffee pulp in dairy concentrates on milk yield and forage intake was analysed using a 4 × 4 Latin square design. Results showed that there were no significant effects (P > 0.05) in grass dry matter intake, milk yield, milk composition body weight and body condition score due to the inclusion of coffee pulp in the dairy concentrates. It is concluded that coffee pulp can be included at levels of 20% in the concentrate without compromising significantly (P > 0.05) milk yield, milk composition and grass dry matter intake. It also was concluded that cost of concentrate is reduced in 20% by the inclusion of coffee pulp.


Subject(s)
Cattle/metabolism , Coffee , Dietary Supplements , Milk/metabolism , Animal Nutritional Physiological Phenomena , Animals , Body Weight/physiology , Eating/physiology , Female , Lactation , Mexico , Milk/chemistry , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL