Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 88: 107325, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32623357

ABSTRACT

The global emergency caused by COVID-19 makes the discovery of drugs capable of inhibiting SARS-CoV-2 a priority, to reduce the mortality and morbidity of this disease. Repurposing approved drugs can provide therapeutic alternatives that promise rapid and ample coverage because they have a documented safety record, as well as infrastructure for large-scale production. The main protease of SARS-CoV-2 (Mpro) is an excellent therapeutic target because it is critical for viral replication; however, Mpro has a highly flexible active site that must be considered when performing computer-assisted drug discovery. In this work, potential inhibitors of the main protease (Mpro) of SARS-Cov-2 were identified through a docking-assisted virtual screening procedure. A total of 4384 drugs, all approved for human use, were screened against three conformers of Mpro. The ligands were further studied through molecular dynamics simulations and binding free energy analysis. A total of nine currently approved molecules are proposed as potential inhibitors of SARS-CoV-2. These molecules can be further tested to speed the development of therapeutics against COVID-19.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Drug Evaluation, Preclinical , Drug Repositioning , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Humans , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/chemistry , Protein Conformation , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
2.
J Virol Methods ; 263: 44-49, 2019 01.
Article in English | MEDLINE | ID: mdl-30347199

ABSTRACT

Retroviral pseudotypes are broadly used as safe instruments to mimic the structure and surface of highly pathogenic viruses. They have been employed for the discovery of new drugs, as diagnostic tools in vaccine studies, and part of serological assays. Because of their widespread use in research and their potential as tools for quality control, it is important to know their shelf life, stability, and best storage conditions. In this study, we produced pseudotypes carrying the lacZ reporter gene and the hemagglutinin (HA) of avian influenza virus subtypes H5 and H7 to investigate their stability under various storage conditions. We produced pseudotypes with titers of approximately 106 RLU/mL, which decreased to 105-106 RLU/mL after short-term storage at 4 °C (up to 4 weeks). Stability was maintained after long-term storage at -20 °C (up to 12 months), even under storage variations such as freeze-thaw cycles. We conclude that, although the titers decreased by 1 log10 under the different storage conditions, the remaining titers can be readily applicable in many techniques, such as neutralization assays. These findings show that large quantities of retroviral pseudotypes can be safely stored for short- or long-term use, allowing standardization and reduced variation in assays involving retroviral pseudotypes.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Lentivirus/physiology , Cold Temperature , Defective Viruses/genetics , Defective Viruses/physiology , Genes, Reporter/genetics , Genetic Vectors/genetics , Genetic Vectors/physiology , HEK293 Cells , Humans , Lentivirus/genetics
3.
Adv Appl Bioinform Chem ; 7: 37-44, 2014.
Article in English | MEDLINE | ID: mdl-25328411

ABSTRACT

The last influenza A pandemic provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates since the beginning of the pandemic until date, we could monitor amino acid changes that occurred in the hemagglutinin (HA) as the virus spread worldwide and became the dominant H1N1 strain. HA is crucial to viral infection because it binds to sialidated cell-receptors and mediates fusion of cell and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. Multiple alignment analysis of sequences of the HA from isolates taken since 2009 to date allowed us to find amino acid changes that were positively selected as the pandemic progressed. We found nine changes that became prevalent: HA1 subunits D104N, K166Q, S188T, S206T, A259T, and K285E; and HA2 subunits E47K, S124N, and E172K. Most of these changes were located in areas involved in inter- and intrachain interactions, while only two (K166Q and S188T) were located in known antigenic sites. We conclude that selective pressure on HA was aimed to improve its functionality and hence virus fitness, rather than at avoidance of immune recognition.

4.
PLoS One ; 8(7): e70005, 2013.
Article in English | MEDLINE | ID: mdl-23894575

ABSTRACT

Hemagglutinin is the major surface glycoprotein of influenza viruses. It participates in the initial steps of viral infection through receptor binding and membrane fusion events. The influenza pandemic of 2009 provided a unique scenario to study virus evolution. We performed molecular dynamics simulations with four hemagglutinin variants that appeared throughout the 2009 influenza A (H1N1) pandemic. We found that variant 1 (S143G, S185T) likely arose to avoid immune recognition. Variant 2 (A134T), and variant 3 (D222E, P297S) had an increased binding affinity for the receptor. Finally, variant 4 (E374K) altered hemagglutinin stability in the vicinity of the fusion peptide. Variants 1 and 4 have become increasingly predominant, while variants 2 and 3 declined as the pandemic progressed. Our results show some of the different strategies that the influenza virus uses to adapt to the human host and provide an example of how selective pressure drives antigenic drift in viral proteins.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza Pandemic, 1918-1919 , Influenza, Human/virology , Adaptation, Physiological/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/epidemiology , Molecular Dynamics Simulation , Molecular Epidemiology , Static Electricity , Surface Properties , Thermodynamics
5.
Virology ; 407(2): 374-80, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20869738

ABSTRACT

The 2009 H1N1 pandemic highlights the need to better understand influenza A infectivity and antigenicity. Relative to other recent seasonal H1N1 influenza strains, the 2009 H1N1 virus grew less efficiently in eggs, which hindered efforts to rapidly supply vaccine. Using lentiviral pseudotypes bearing influenza hemagglutinin (HA-pseudotypes) we evaluated a glutamine to arginine mutation at position 223 (Q223R) and glycosylation at residue 276 in HA for their effects on infectivity and neutralization. Q223R emerged during propagation in eggs and lies in the receptor binding site. We found that the Q223R mutation greatly enhanced infectivity of HA-pseudotypes in human cells, which was further augmented by inclusion of the viral neuraminidase (NA) and M2 proteins. Loss of glycosylation at residue 276 did not alter infectivity. None of these modifications affected neutralization. These findings provide information for increasing 2009 H1N1HA-pseudotype titers without altering antigenicity and offer insights into receptor use.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Mutation , Receptors, Virus/metabolism , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Binding Sites/genetics , Chick Embryo , Computational Biology/methods , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Neutralization Tests , Receptors, Virus/genetics
6.
J Mol Model ; 16(7): 1213-22, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20033464

ABSTRACT

M.HgiDII is a methyltransferase (MTase) from Herpetosiphon giganteus that recognizes the sequence GTCGAC. This enzyme belongs to a group of MTases that share a high degree of amino acid similarity, albeit none of them has been thoroughly characterized. To study the catalytic mechanism of M.HgiDII and its interactions with DNA, we performed molecular dynamics simulations with a homology model of M.HgiDII complexed with DNA and S-adenosyl-methionine. Our results indicate that M.HgiDII may not rely only on Glu119 to activate the cytosine ring, which is an early step in the catalysis of cytosine methylation; apparently, Arg160 and Arg162 may also participate in the activation by interacting with cytosine O2. Another residue from the catalytic site, Val118, also played a relevant role in the catalysis of M.HgiDII. Val118 interacted with the target cytosine and kept water molecules from accessing the region of the catalytic pocket where Cys79 interacts with cytosine, thus preventing water-mediated disruption of interactions in the catalytic site. Specific recognition of DNA was mediated mainly by amino acids of the target recognition domain, although some amino acids (loop 80-88) of the catalytic domain may also contribute to DNA recognition. These interactions involved direct contacts between M.HgiDII and DNA, as well as indirect contacts through water bridges. Additionally, analysis of sequence alignments with closely related MTases helped us to identify a motif in the TRD of M.HgiDII that may be relevant to specific DNA recognition.


Subject(s)
Bacterial Proteins/chemistry , DNA, Bacterial/chemistry , Methyltransferases/chemistry , Models, Molecular , Molecular Dynamics Simulation , S-Adenosylmethionine/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Biocatalysis , Chloroflexi/enzymology , Chloroflexi/genetics , DNA, Bacterial/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Chemical , Molecular Sequence Data , Molecular Structure , Protein Binding , Protein Structure, Tertiary , S-Adenosylmethionine/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...