Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 14(3): 289-94, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21299824

ABSTRACT

The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.


Subject(s)
Fresh Water , Plant Leaves/metabolism , Carbon Cycle , Carbon Dioxide , Carbon Sequestration , Climate Change , Ecosystem , Plants/metabolism , Temperature
2.
Environ Pollut ; 153(2): 440-9, 2008 May.
Article in English | MEDLINE | ID: mdl-17923178

ABSTRACT

Biomonitoring programs to access the ecological integrity of freshwaters tend to rely exclusively on structural parameters. Here we evaluated stream ecological integrity using (a) benthic macroinvertebrate derived metrics and a biotic index as measures of structural integrity and (b) oak litter decomposition and associated fungal sporulation rates as measures of functional integrity. The study was done at four sites (S1, S2, S3 and S4) along a downstream increasing phosphorus and habitat degradation gradient in a small stream. The biotic index, invertebrate metrics, invertebrate and fungal communities' structure and sporulation rates discriminated upstream and downstream sites. Decomposition rates classified sites S4 and S2 as having a compromised ecosystem functioning. Although both functional and structural approaches gave the same results for the most impacted site (S4), they were complementary for moderately impacted sites (S2 and S3), and we therefore support the need for incorporating functional measures in evaluations of stream ecological integrity.


Subject(s)
Ecosystem , Fungi/physiology , Invertebrates/growth & development , Plant Leaves/microbiology , Quercus/microbiology , Animals , Conservation of Natural Resources , Ecology/methods , Environmental Monitoring/methods , Population Dynamics , Rivers , Seasons , Spores, Fungal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...