Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1347185, 2024.
Article in English | MEDLINE | ID: mdl-38419728

ABSTRACT

Sophorolipids, glycolipid biosurfactants derived from microorganisms such as Starmerella bombicola, possess distinctive surface-active and bioactive properties, holding potential applications in cosmetics, pharmaceuticals and bioremediation. However, the limited structural variability in wild-type sophorolipids restricts their properties and applications. To address this, metabolic engineering efforts have allowed to create a portfolio of molecules. In this study, we went one step further by chemically modifying microbially produced sophorosides, produced by an engineered S. bombicola. Twenty-four new sophoroside derivatives were synthesized, including sophoroside amines with varying alkyl chain lengths (ethyl to octadecyl) on the nitrogen atom and their corresponding quaternary ammonium salts. Additionally, six different microbially produced glycolipid biosurfactants were hydrogenated to achieve fully saturated lipid tails. These derivatives, along with microbially produced glycolipids and three benchmark biosurfactants (di-rhamnolipids, alkyl polyglucosides, cocamidopropyl betaine), were assessed for antimicrobial activity against bacteria (Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa) and yeast (Candida albicans). Results indicated that microbially produced glycolipids, such as bola sophorosides, acidic sophorolipids and acidic glucolipids exhibit selective antimicrobial activity against the test organisms. Conversely, lactonic sophorolipids, sophoroside amines and quaternary ammonium salts display a broad antimicrobial activity. N-octyl, N-dodecyl and N-octadecyl derivatives exhibit the lowest minimal inhibitory concentrations, ranging from 0.014 to 20.0 mg mL-1. This study demonstrates the potential synergy of thoughtful biotechnology and targeted chemistry to precisely tailor glycolipid biosurfactants to meet specific requirements across applications.

2.
Microb Cell Fact ; 22(1): 188, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726725

ABSTRACT

BACKGROUND: Plastics are an indispensable part of our daily life. However, mismanagement at their end-of-life results in severe environmental consequences. The microbial conversion of these polymers into new value-added products offers a promising alternative. In this study, we engineered the soil-bacterium Comamonas testosteroni KF-1, a natural degrader of terephthalic acid, for the conversion of the latter to the high-value product 2-pyrone-4,6-dicarboxylic acid. RESULTS: In order to convert terephthalic acid to 2-pyrone-4,6-dicarboxylic acid, we deleted the native PDC hydrolase and observed only a limited amount of product formation. To test whether this was the result of an inhibition of terephthalic acid uptake by the carbon source for growth (i.e. glycolic acid), the consumption of both carbon sources was monitored in the wild-type strain. Both carbon sources were consumed at the same time, indicating that catabolite repression was not the case. Next, we investigated if the activity of pathway enzymes remained the same in the wild-type and mutant strain. Here again, no statistical differences could be observed. Finally, we hypothesized that the presence of a pmdK variant in the degradation operon could be responsible for the observed phenotype and created a double deletion mutant strain. This newly created strain accumulated PDC to a larger extent and again consumed both carbon sources. The double deletion strain was then used in a bioreactor experiment, leading to the accumulation of 6.5 g/L of product in 24 h with an overall productivity of 0.27 g/L/h. CONCLUSIONS: This study shows the production of the chemical building block 2-pyrone-4,6-dicarboxylic acid from terephthalic acid through an engineered C. testosteroni KF-1 strain. It was observed that both a deletion of the native PDC hydrolase as well as a pmdK variant is needed to achieve high conversion yields. A product titer of 6.5 g/L in 24 h with an overall productivity of 0.27 g/L/h was achieved.


Subject(s)
Comamonas testosteroni , Comamonas testosteroni/genetics , Carbon , Dicarboxylic Acids , Hydrolases
3.
Biotechnol Adv ; 54: 107788, 2022.
Article in English | MEDLINE | ID: mdl-34166752

ABSTRACT

Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.


Subject(s)
Glycolipids , Saccharomycetales , Animals , Bees , Oleic Acids , Saccharomycetales/genetics , Surface-Active Agents
4.
J Fungi (Basel) ; 7(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34829208

ABSTRACT

The yeast Starmerella bombicola distinguishes itself from other yeasts by its potential of producing copious amounts of the secondary metabolites sophorolipids (SLs): these are glycolipid biosurfactants composed out of a(n) (acetylated) sophorose moiety and a lipid tail. Although SLs are the subject of numerous research papers and have been commercialized, e.g., in eco-friendly cleaning solutions, the natural function of SLs still remains elusive. This research article investigates several hypotheses for why S. bombicola invests that much energy in the production of SLs, and we conclude that the main natural function of SLs in S. bombicola is niche protection: (1) the extracellular storage of an energy-rich, yet metabolically less accessible carbon source that can be utilized by S. bombicola upon conditions of starvation with (2) antimicrobial properties. In this way, S. bombicola creates a dual advantage in competition with other microorganisms. Additionally, SLs can expedite growth on rapeseed oil, composed of triacylglycerols which are hydrophobic substrates present in the yeasts' environment, for a non-SL producing strain (Δcyp52M1). It was also found that-at least under lab conditions-SLs do not provide protection against high osmotic pressure prevalent in sugar-rich environments such as honey or nectar present in the natural habitat of S. bombicola.

SELECTION OF CITATIONS
SEARCH DETAIL
...