Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31151324

ABSTRACT

The hotel industry is an important energy consumer that needs efficient energy management methods to guarantee its performance and sustainability. The new role of hotels as prosumers increases the difficulty in the design of these methods. Also, the scenery is more complex as renewable energy systems are present in the hotel energy mix. The performance of energy management systems greatly depends on the use of reliable predictions for energy load. This paper presents a new methodology to predict energy load in a hotel based on intelligent techniques. The model proposed is based on a hybrid intelligent topology implemented with a combination of clustering techniques and intelligent regression methods (Artificial Neural Network and Support Vector Regression). The model includes its own energy demand information, occupancy rate, and temperature as inputs. The validation was done using real hotel data and compared with time-series models. Forecasts obtained were satisfactory, showing a promising potential for its use in energy management systems in hotel resorts.

2.
Sensors (Basel) ; 19(12)2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31216729

ABSTRACT

This paper proposes a methodology for dealing with an issue of crucial practical importance in real engineering systems such as fault detection and recovery of a sensor. The main goal is to define a strategy to identify a malfunctioning sensor and to establish the correct measurement value in those cases. As study case, we use the data collected from a geothermal heat exchanger installed as part of the heat pump installation in a bioclimatic house. The sensor behaviour is modeled by using six different machine learning techniques: Random decision forests, gradient boosting, extremely randomized trees, adaptive boosting, k-nearest neighbors, and shallow neural networks. The achieved results suggest that this methodology is a very satisfactory solution for this kind of systems.

3.
Sensors (Basel) ; 17(1)2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28106793

ABSTRACT

This paper presents a new fault detection system in hypnotic sensors used for general anesthesia during surgery. Drug infusion during surgery is based on information received from patient monitoring devices; accordingly, faults in sensor devices can put patient safety at risk. Our research offers a solution to cope with these undesirable scenarios. We focus on the anesthesia process using intravenous propofol as the hypnotic drug and employing a Bispectral Index (BISTM) monitor to estimate the patient's unconsciousness level. The method developed identifies BIS episodes affected by disturbances during surgery with null clinical value. Thus, the clinician-or the automatic controller-will not take those measures into account to calculate the drug dose. Our method compares the measured BIS signal with expected behavior predicted by the propofol dose provider and the electromyogram (EMG) signal. For the prediction of the BIS signal, a model based on a hybrid intelligent system architecture has been created. The model uses clustering combined with regression techniques. To validate its accuracy, a dataset taken during surgeries with general anesthesia was used. The proposed fault detection method for BIS sensor measures has also been verified using data from real cases. The obtained results prove the method's effectiveness.


Subject(s)
Monitoring, Intraoperative , Anesthesia , Anesthetics, Intravenous , Electroencephalography , Humans , Propofol
SELECTION OF CITATIONS
SEARCH DETAIL
...