Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241642

ABSTRACT

This paper presents the fabrication and characterization of a biaxial MEMS (MicroElectroMechanical System) scanner based on PZT (Lead Zirconate Titanate) which incorporates a low-absorption dielectric multilayer coating, i.e., a Bragg reflector. These 2 mm square MEMS mirrors, developed on 8-inch silicon wafers using VLSI (Very Large Scale Integration) technology are intended for long-range (>100 m) LIDAR (LIght Detection And Ranging) applications using a 2 W (average power) pulsed laser at 1550 nm. For this laser power, the use of a standard metal reflector leads to damaging overheating. To solve this problem, we have developed and optimised a physical sputtering (PVD) Bragg reflector deposition process compatible with our sol-gel piezoelectric motor. Experimental absorption measurements, performed at 1550 nm and show up to 24 times lower incident power absorption than the best metallic reflective coating (Au). Furthermore, we validated that the characteristics of the PZT, as well as the performance of the Bragg mirrors in terms of optical scanning angles, were identical to those of the Au reflector. These results open up the possibility of increasing the laser power beyond 2W for LIDAR applications or other applications requiring high optical power. Finally, a packaged 2D scanner was integrated into a LIDAR system and three-dimensional point cloud images were obtained, demonstrating the scanning stability and operability of these 2D MEMS mirrors.

2.
Lab Chip ; 14(19): 3739-49, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25080028

ABSTRACT

Single cell analysis circumvents the need to average data from large populations by observing each cell individually, thus enabling the analysis of cell-to-cell variability. The ability to work on this scale presents many new opportunities for the life sciences and biomedical applications. Microfluidics has become a tool of choice for such studies and electrowetting on dielectric (EWOD) technology is well adapted for samples with reduced size and biological studies at the single cell level. In the present manuscript, for the first time, we present an integrated and automated system based on EWOD that can process the complete workflow on a single device, from the isolation of a single cell to mRNA purification and gene expression analysis.


Subject(s)
Cell Separation/instrumentation , Electrowetting/instrumentation , Microfluidic Analytical Techniques/instrumentation , Multiplex Polymerase Chain Reaction/instrumentation , RNA, Messenger/analysis , RNA, Messenger/isolation & purification , Cell Line , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...