Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835289

ABSTRACT

The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.


Subject(s)
Plastics , Waste Management , Polymers , Polyurethanes , Polyethylene Terephthalates , Biotechnology , Recycling
2.
Waste Manag Res ; 41(4): 881-893, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36301204

ABSTRACT

Solid waste management (SWM) represents an important issue for small islands. This research evaluates the municipal SWM system of the Pelagian archipelago, in Italy. The research aims to evaluate environmental and econoemic benefits of onsite treatment plants for the valorization of the organic fraction of municipal solid waste. The sizing of the anaerobic digestion (AD) and composting plant was developed, and the characteristics of the plant were used to conduct a cost analysis and an environmental life cycle assessment. The current waste management system (S0) has been compared with the new strategy proposed (S1). Results showed that S1 leads to save more than 250,000 € y-1 due to the avoidance of organic waste final disposal and shipping, determining a payback time of about 7 years. Environmental benefits include a lowering of CO2-eq emission of more than 1100 tonnes per year and a reduction of all the six environmental impacts analysed. The outcomes represent a novel contribution to the scientific literature since the research provides the first comparison of quantitative data about environmental and cost benefits of onsite AD plants in small islands. The research underlines that onsite waste treatment systems are viable options to improve SWM systems in isolated regions.


Subject(s)
Composting , Refuse Disposal , Waste Management , Islands , Refuse Disposal/methods , Waste Management/methods , Solid Waste/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...