Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 21(9): 1381-1392, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35732569

ABSTRACT

Only a small percentage (<1%) of patients with late-stage lung squamous cell carcinoma (LUSC) are eligible for targeted therapy. Because PI3K/AKT/mTOR signaling, particularly Phosphatidylinositol 3-kinase CA (PIK3CA), is dysregulated in two-thirds of LUSC, and DNA damage response pathways are enriched in LUSC, we tested whether CC-115, a dual mTORC1/2 and DNA-PK inhibitor, sensitizes LUSC to chemotherapy. We demonstrate that CC-115 synergizes with carboplatin in six of 14 NSCLC cell lines, primarily PIK3CA-mutant LUSC. Synergy was more common in cell lines that had decreased basal levels of activated AKT and DNA-PK, evidenced by reduced P-S473-AKT, P-Th308-AKT, and P-S2056-DNA-PKcs. CC-115 sensitized LUSC to carboplatin by inhibiting chemotherapy-induced AKT activation and maintaining apoptosis, particularly in PIK3CA-mutant cells lacking wild-type (WT) TP53. In addition, pathway analysis revealed that enrichments in the IFNα and IFNγ pathways were significantly associated with synergy. In multiple LUSC patient-derived xenograft and cell line tumor models, CC-115 plus platinum-based doublet chemotherapy significantly inhibited tumor growth and increased overall survival as compared with either treatment alone at clinically relevant dosing schedules. IHC and immunoblot analysis of CC-115-treated tumors demonstrated decreased P-Th308-AKT, P-S473-AKT, P-S235/236-S6, and P-S2056-DNA-PKcs, showing direct pharmacodynamic evidence of inhibited PI3K/AKT/mTOR signaling cascades. Because PI3K pathway and DNA-PK inhibitors have shown toxicity in clinical trials, we assessed toxicity by examining weight and numerous organs in PRKDC-WT mice, which demonstrated that the combination treatment does not exacerbate the clinically accepted side effects of standard-of-care chemotherapy. This preclinical study provides strong support for the further investigation of CC-115 plus chemotherapy in LUSC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Animals , Carboplatin/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , DNA/therapeutic use , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrazines , TOR Serine-Threonine Kinases/metabolism , Triazoles
3.
J Thorac Oncol ; 14(11): 1982-1988, 2019 11.
Article in English | MEDLINE | ID: mdl-31254668

ABSTRACT

INTRODUCTION: Osimertinib is an effective third-generation tyrosine kinase inhibitor (TKI) for EGFR-mutant lung cancers. However, treatment for patients with acquired resistance to osimertinib remains challenging. We characterized a novel EGFR mutation in exon 20 that was acquired while on osimertinib. METHODS: A 79-year-old woman had disease progression during third-line treatment with osimertinib for an EGFR L858R/T790M-mutant lung cancer. Sequencing of circulating cell-free DNA showed EGFR L858R, an acquired novel EGFR M766Q mutation in exon 20, and no evidence of EGFR T790M. Homology modeling was performed to investigate the effects of M766Q on binding to osimertinib. L858R and L858R/M766Q mutations were retrovirally introduced into Ba/F3 and NIH/3T3 cells and evaluated for sensitivity to first-generation (erlotinib), second-generation (afatinib, neratinib, and poziotinib), and third-generation TKIs (osimertinib) by cell viability and colony-formation assays. EGFR-mediated signaling pathways were interrogated by western blotting. RESULTS: Modeling suggested that EGFR M766Q could disrupt osimertinib binding. L858R/M766Q double-mutant cells were 12-fold more resistant to osimertinib, and more than 250-fold more resistant to erlotinib and afatinib, as compared to L858R-mutant cells. In contrast, double-mutant cells remained sensitive to neratinib and poziotinib at clinically relevant doses (concentration that inhibits 50%, 4.3 and 1.3 nM, respectively). This was corroborated by the effects of the TKIs on colony formation and EGFR signaling. CONCLUSIONS: Acquisition of EGFR M766Q exon 20 mutation is a novel mechanism of acquired resistance to osimertinib. EGFR-mutant lung cancers with an acquired EGFR M766Q mutation in the setting of osimertinib resistance may be sensitive to neratinib and poziotinib.


Subject(s)
Acrylamides/pharmacology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Aniline Compounds/pharmacology , Lung Neoplasms/genetics , Quinazolines/pharmacology , Quinolines/pharmacology , Adenocarcinoma of Lung/pathology , Aged , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Protein Kinase Inhibitors/pharmacology , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...