Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 333(5): 316-324, 2020 06.
Article in English | MEDLINE | ID: mdl-32306561

ABSTRACT

Polychaete worms are widespread and diverse in marine and estuarine habitats subject to varying salinity, in areas influenced by tides, demanding physiological adjustment for internal homeostasis. They are typically considered and reported to be osmoconformers, but they are not often studied for their osmoregulation. Here, three species of polychaete worms from distinct coastal habitats have been investigated: the spionid Scolelepis goodbody (intertidal in saline, exposed sandy beaches), the nereidid Laeonereis culveri (estuarine polyhaline), and the nephtyid Nephtys fluviatilis (estuarine oligohaline). The general objective here was to relate ecological aspects and physiology of the studied species. Constitutive whole body osmolality and carbonic anhydrase activity (CAA, relevant for osmoregulation, acid-base balance and respiration) have been assayed. In addition, cell volume regulatory capacity (from whole body cell dissociation) was challenged under hypoosmotic and hyperosmotic shocks (50% intensity), with respect to isosmotic control. S. googdbody and L. culveri, the two species from most saline environments (marine/estuarine), showed higher CAA than N. fluviatilis, which, in turn, displayed a hyperosmotic gradient to water of salinity 15. Cells from S. goodbody and L. culveri showed regulatory volume decrease upon swelling, with S. goodbody showing the largest volume increase. As in other more studied marine invertebrate groups, polychaetes also show variability in their osmoregulatory physiology, related to distinct saline challenges faced in their coastal habitats.


Subject(s)
Carbonic Anhydrases/metabolism , Estuaries , Polychaeta/physiology , Salt Tolerance , Animals , Body Fluids , Cell Size , Ecosystem , Osmolar Concentration , Osmoregulation/physiology , Water-Electrolyte Balance
2.
Article in English | MEDLINE | ID: mdl-27421237

ABSTRACT

Echinoderms are exclusively marine osmoconformer invertebrates. Some species occupy the challenging intertidal region. Upon salinity changes, the extracellular osmotic concentration of these animals also varies, exposing tissues and cells to osmotic challenges. Cells and tissues may then respond with volume regulation mechanisms, which involve transport of ions and water into and/or out of the cells, through ion transporters, such as the Na(+)/K(+)-ATPase and NKCC. The goal of this study was to relate the cell volume regulation capacity of echinoderm intestinal cells Na(+)/K(+)-ATPase and NKCC activities, in three echinoderm species: Holothuria grisea, Arbacia lixula, and Echinometra lucunter. Isolated cells of these species displayed some control of their cell volume upon exposure to anisosmotic media (isolated intestinal cells, calcein fluorescence as indicator of volume change), with a distinct higher capacity shown by H. grisea, which did not swell even upon 50% hyposmotic shock. The holothuroid cells showed indirect evidence (effect of furosemide) of the participation of NKCC in this process, with a secretory function, and of a secondary role by the NKA (effect of ouabain). Other mechanisms are probably responsible for this function in the urchins. Variable expression of these transporters, and others not examined here, may to some extent account for the variability in cell volume regulation capacity in echinoderm cells.


Subject(s)
Echinodermata/cytology , Echinodermata/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Arbacia/cytology , Arbacia/metabolism , Cell Size , Holothuria/cytology , Holothuria/metabolism , Intestinal Mucosa/metabolism , Intestines/cytology , Osmotic Pressure , Sea Urchins/cytology , Sea Urchins/metabolism
3.
Article in English | MEDLINE | ID: mdl-23261991

ABSTRACT

Echinoderms are considered marine osmoconforming invertebrates. However, many are intertidal or live next to estuaries, tolerating salinity changes and showing extracellular gradients to dilute seawater. Three species of echinoids - Lytechinus variegatus, which can occur next to estuarine areas, the rocky intertidal Echinometra lucunter, and the mostly subtidal Arbacia lixula - were submitted to a protocol of stepwise (rate of 2-3 psu/h) dilution, down to 15 psu, or concentration, up to 45 psu, of control seawater (35 psu). Coelomic fluid samples were obtained every hour. The seawater dilution experiment lasted 8h, while the seawater concentration experiment lasted 6h. Significant gradients (40-90% above value in 15 psu seawater) for osmolality, sodium, magnesium, and potassium were shown by L. variegatus and E. lucunter. A. lixula showed the smallest gradients, displaying the strongest conforming behavior. The esophagus of the three species was challenged in vitro with 20 and 50% osmotic shocks (hypo- and hyperosmotic). A. lixula, the most "conforming" species, showed the highest capacity to avoid swelling of its tissues upon the -50% hyposmotic shock, and was also the species less affected by salinity changes concerning the observation of spines and ambulacral feet movement in the whole-animal experiments. Thus, the most conforming species (A. lixula) displayed the highest capacity to regulate tissue water/volume, and was also the most euryhaline among the three studied species. In addition, tissues from all three species swelled much more than they shrank under osmotic shocks of same magnitude. This distinct trend to gain water, despite the capacity to hold some gradients upon seawater dilution, helps to explain why echinoderms cannot be fully estuarine, or ever enter fresh water.


Subject(s)
Arbacia/metabolism , Lytechinus/metabolism , Water-Electrolyte Balance , Animals , Arbacia/anatomy & histology , Arbacia/physiology , Behavior, Animal/physiology , Chlorides/metabolism , Esophagus/anatomy & histology , Esophagus/metabolism , Immune System/metabolism , Lytechinus/anatomy & histology , Lytechinus/physiology , Magnesium/metabolism , Organ Size , Osmotic Pressure , Potassium/metabolism , Salinity , Salt Tolerance , Sodium/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...