Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917323

ABSTRACT

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that causes severe outbreaks in human populations. ZIKV infection leads to the accumulation of small non-coding viral RNAs (known as sfRNAs) that are crucial for evasion of antiviral responses and for viral pathogenesis. However, the mechanistic understanding of how sfRNAs function remains incomplete. Here, we use recombinant ZIKVs and ribosome profiling of infected human cells to show that sfRNAs block translation of antiviral genes. Mechanistically, we demonstrate that specific RNA structures present in sfRNAs trigger PKR activation, which instead of limiting viral replication, enhances viral particle production. Although ZIKV infection induces mRNA expression of antiviral genes, translation efficiency of type I interferon and interferon stimulated genes were significantly downregulated by PKR activation. Our results reveal a novel viral adaptation mechanism mediated by sfRNAs, where ZIKV increases its fitness by repurposing the antiviral role of PKR into a proviral factor.

2.
Elife ; 82019 04 23.
Article in English | MEDLINE | ID: mdl-31012849

ABSTRACT

mRNA translation decodes nucleotide into amino acid sequences. However, translation has also been shown to affect mRNA stability depending on codon composition in model organisms, although universality of this mechanism remains unclear. Here, using three independent approaches to measure exogenous and endogenous mRNA decay, we define which codons are associated with stable or unstable mRNAs in human cells. We demonstrate that the regulatory information affecting mRNA stability is encoded in codons and not in nucleotides. Stabilizing codons tend to be associated with higher tRNA levels and higher charged/total tRNA ratios. While mRNAs enriched in destabilizing codons tend to possess shorter poly(A)-tails, the poly(A)-tail is not required for the codon-mediated mRNA stability. This mechanism depends on translation; however, the number of ribosome loads into a mRNA modulates the codon-mediated effects on gene expression. This work provides definitive evidence that translation strongly affects mRNA stability in a codon-dependent manner in human cells.


Subject(s)
Codon , Protein Biosynthesis , RNA Stability , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...