Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
2.
J Environ Qual ; 53(2): 187-197, 2024.
Article in English | MEDLINE | ID: mdl-38263595

ABSTRACT

Increases in cereal crop yield per area have increased global food security. "Era" studies compare historical and modern crop varieties in controlled experimental settings and are routinely used to understand how advances in crop genetics and management affect crop yield. However, to date, no era study has explored how advances in maize (Zea mays L.) genetics and management (i.e., cropping systems) have affected environmental outcomes. Here, we developed a cropping systems era study in Iowa, USA, to examine how yield and nitrate losses have changed from "Old" systems common in the 1990s to "Current" systems common in the 2010s, and to "Future" systems projected to be common in the 2030s. We tested the following hypothesis: If maize yield and nitrogen use efficiency have improved over previous decades, Current and Future maize systems will have benefits to water quality compared to Old systems. We show that not only have maize yield and nitrogen use efficiency (kg grain kg-1 N), on average, improved over time but also yield-scaled nitrate load + soil nitrate was reduced by 74% and 91% from Old to Current and Future systems, respectively. Continuing these trajectories of improvement will be critical to meet the needs of a growing and more affluent population while reducing deleterious effects of agricultural systems on ecosystem services.


Subject(s)
Nitrates , Zea mays , Nitrates/analysis , Ecosystem , Agriculture , Soil , Edible Grain/chemistry , Nitrogen/analysis , Fertilizers/analysis , China
3.
Glob Chang Biol ; 30(1): e17101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273560

ABSTRACT

Soil organic carbon (SOC) plays an essential role in mediating community structure and metabolic activities of belowground biota. Unraveling the evolution of belowground communities and their feedback mechanisms on SOC dynamics helps embed the ecology of soil microbiome into carbon cycling, which serves to improve biodiversity conservation and carbon management strategy under global change. Here, croplands with a SOC gradient were used to understand how belowground metabolisms and SOC decomposition were linked to the diversity, composition, and co-occurrence networks of belowground communities encompassing archaea, bacteria, fungi, protists, and invertebrates. As SOC decreased, the diversity of prokaryotes and eukaryotes also decreased, but their network complexity showed contrasting patterns: prokaryotes increased due to intensified niche overlap, while that of eukaryotes decreased possibly because of greater dispersal limitation owing to the breakdown of macroaggregates. Despite the decrease in biodiversity and SOC stocks, the belowground metabolic capacity was enhanced as indicated by increased enzyme activity and decreased enzymatic stoichiometric imbalance. This could, in turn, expedite carbon loss through respiration, particularly in the slow-cycling pool. The enhanced belowground metabolic capacity was dominantly driven by greater multitrophic network complexity and particularly negative (competitive and predator-prey) associations, which fostered the stability of the belowground metacommunity. Interestingly, soil abiotic conditions including pH, aeration, and nutrient stocks, exhibited a less significant role. Overall, this study reveals a greater need for soil C resources across multitrophic levels to maintain metabolic functionality as declining SOC results in biodiversity loss. Our researchers highlight the importance of integrating belowground biological processes into models of SOC turnover, to improve agroecosystem functioning and carbon management in face of intensifying anthropogenic land-use and climate change.


Subject(s)
Carbon , Soil , Soil/chemistry , Biodiversity , Bacteria , Archaea
4.
Front Plant Sci ; 14: 1270166, 2023.
Article in English | MEDLINE | ID: mdl-37877090

ABSTRACT

Nitrogen (N) limits crop production, yet more than half of N fertilizer inputs are lost to the environment. Developing maize hybrids with improved N use efficiency can help minimize N losses and in turn reduce adverse ecological, economical, and health consequences. This study aimed to identify single nucleotide polymorphisms (SNPs) associated with agronomic traits (plant height, grain yield, and anthesis to silking interval) under high and low N conditions. A genome-wide association study (GWAS) was conducted using 181 doubled haploid (DH) lines derived from crosses between landraces from the Germplasm Enhancement of Maize (BGEM lines) project and two inbreds, PHB47 and PHZ51. These DH lines were genotyped using 62,077 SNP markers. The same lines from the per se trials were used as parental lines for the testcross field trials. Plant height, anthesis to silking interval, and grain yield were collected from high and low N conditions in three environments for both per se and testcross trials. We used three GWAS models, namely, general linear model (GLM), mixed linear model (MLM), and Fixed and Random model Circulating Probability Unification (FarmCPU) model. We observed significant genetic variation among the DH lines and their derived testcrosses. Interestingly, some testcrosses of exotic introgression lines were superior under high and low N conditions compared to the check hybrid, PHB47/PHZ51. We detected multiple SNPs associated with agronomic traits under high and low N, some of which co-localized with gene models associated with stress response and N metabolism. The BGEM panel is, thus, a promising source of allelic diversity for genes controlling agronomic traits under different N conditions.

5.
Nat Commun ; 14(1): 2967, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322013

ABSTRACT

Much research focuses on increasing carbon storage in mineral-associated organic matter (MAOM), in which carbon may persist for centuries to millennia. However, MAOM-targeted management is insufficient because the formation pathways of persistent soil organic matter are diverse and vary with environmental conditions. Effective management must also consider particulate organic matter (POM). In many soils, there is potential for enlarging POM pools, POM can persist over long time scales, and POM can be a direct precursor of MAOM. We present a framework for context-dependent management strategies that recognizes soils as complex systems in which environmental conditions constrain POM and MAOM formation.


Subject(s)
Carbon Sequestration , Soil , Minerals , Particulate Matter , Carbon
6.
Mol Ecol ; 32(13): 3718-3732, 2023 07.
Article in English | MEDLINE | ID: mdl-37000121

ABSTRACT

Understanding how microbial communities are shaped across spatial dimensions is of fundamental importance in microbial ecology. However, most studies on soil biogeography have focused on the topsoil microbiome, while the factors driving the subsoil microbiome distribution are largely unknown. Here we used 16S rRNA amplicon sequencing to analyse the factors underlying the bacterial ß-diversity along vertical (0-240 cm of soil depth) and horizontal spatial dimensions (~500,000 km2 ) in the U.S. Corn Belt. With these data we tested whether the horizontal or vertical spatial variation had stronger impacts on the taxonomic (Bray-Curtis) and phylogenetic (weighted Unifrac) ß-diversity. Additionally, we assessed whether the distance-decay (horizontal dimension) was greater in the topsoil (0-30 cm) or subsoil (in each 30 cm layer from 30-240 cm) using Mantel tests. The influence of geographic distance versus edaphic variables on the bacterial communities from the different soil layers was also compared. Results indicated that the phylogenetic ß-diversity was impacted more by soil depth, while the taxonomic ß-diversity changed more between geographic locations. The distance-decay was lower in the topsoil than in all subsoil layers analysed. Moreover, some subsoil layers were influenced more by geographic distance than any edaphic variable, including pH. Although different factors affected the topsoil and subsoil biogeography, niche-based models explained the community assembly of all soil layers. This comprehensive study contributed to elucidating important aspects of soil bacterial biogeography including the major impact of soil depth on the phylogenetic ß-diversity, and the greater influence of geographic distance on subsoil than on topsoil bacterial communities in agroecosystems.


Subject(s)
Soil , Zea mays , Zea mays/genetics , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny
7.
Nat Commun ; 14(1): 673, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781878

ABSTRACT

Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2-/- mice, which show some autism-like behaviors. Cntnap2-/- mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2-/- mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2-/- mice.


Subject(s)
Odorants , Smell , Female , Mice , Animals , Smell/physiology , Olfactory Bulb/physiology , Learning , Behavior, Animal/physiology , Membrane Proteins , Nerve Tissue Proteins
8.
Glob Chang Biol ; 28(24): 7410-7427, 2022 12.
Article in English | MEDLINE | ID: mdl-36149390

ABSTRACT

Dissolved organic matter (DOM) plays a vital role in biogeochemical processes and in determining the responses of soil organic matter (SOM) to global change. Although the quantity of soil DOM has been inventoried across diverse spatio-temporal scales, the underlying mechanisms accounting for variability in DOM dynamics remain unclear especially in upland ecosystems. Here, a gradient of SOM storage across 12 croplands in northeast China was used to understand links between DOM dynamics, microbial metabolism, and abiotic conditions. We assessed the composition, biodegradability, and key biodegradable components of DOM. In addition, SOM and mineral-associated organic matter (MAOM) composition, soil enzyme activities, oxygen availability, soil texture, and iron (Fe), Fe-bound organic matter, and nutrient concentrations were quantified to clarify the drivers of DOM quality (composition and biodegradability). The proportion of biodegradable DOM increased exponentially with decreasing initial DOM concentration due to larger fractions of depolymerized DOM that was rich in small-molecular phenols and proteinaceous components. Unexpectedly, the composition of DOM was decoupled from that of SOM or MAOM, but significantly related to enzymatic properties. These results indicate that microbial metabolism exhibited a dominant role in DOM generation. As DOM concentration declined, increased soil oxygen availability regulated DOM composition and enhanced its biodegradability mainly through mediating microbial metabolism and Fe oxidation. The oxygen-induced oxidation of Fe(II) to Fe(III) removed complex DOM compounds with large molecular weight. Moreover, increased oxygen availability stimulated oxidase-catalyzed depolymerization of aromatic substances, and promoted production of protein-like DOM components due to lower enzymatic C/N acquisition ratio. As global changes in temperature and moisture will have large impacts on soil oxygen availability, the role of oxygen in regulating DOM dynamics highlights the importance of integrating soil oxygen supply with microbial metabolism and Fe redox status to improve model predictions of soil carbon under climate change.


Subject(s)
Iron , Soil , Soil/chemistry , Dissolved Organic Matter , Ecosystem , Oxygen , Oxidation-Reduction
9.
ACS Appl Mater Interfaces ; 14(22): 25949-25961, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35638646

ABSTRACT

Nitrogen management through monitoring of crop nitrate status can improve agricultural productivity, profitability, and environmental performance. Current plant nitrate test methods require expensive instruments, time-intensive labor, and trained personnel. Frequent monitoring of in planta nitrate levels of the stalks in living plants can help to better understand the nitrogen cycle and the physiological responses to environmental variations. Although existing enzymatic electrochemical sensors provide high selectivity, they suffer from short shelf life, high cost, low-temperature storage requirement, and potential degradation over time. To overcome these issues, an artificial enzyme (vitamin B12 or VB12) and a two-dimensional material (graphene oxide or GO) are introduced into a conventional photoresist (SU8) to form a bioresin SU8-GO-VB12 that can be patterned with photolithography and laser-pyrolyzed into a carbon-based nanocomposite C-GO-VB12. The electrocatalytic activity of the cobalt factor in VB12, the surface enhancement properties of GO, and the porous feature of pyrolytic carbon are synergized through design to provide C-GO-VB12 with a superior ability to detect nitrate ions through redox reactions. In addition, laser writing-based selective pyrolysis allows applying thermal energy to target only SU8-GO-VB12 for selective pyrolysis of the bioresin into C-GO-VB12, thus reducing the total energy input and avoiding the thermal influence on the materials and structures in other areas of the substrate. The C-GO-VB12 nitrate sensor demonstrates a year-long shelf lifetime, high selectivity, and a wide dynamic range that enables a direct nitrate test for the extracted sap of maize stalk. For in situ monitoring of the nitrate level and dynamic changes in living maize plants, a microelectromechanical system-based needle sensor is formed with C-GO-VB12. The needle sensor allows direct insertion into the plant for in situ measurement of nitrate ions under different growth environments over time. The needle sensor represents a new method for monitoring in planta nitrate dynamics with no need for sample preparation, thus making a significant impact in plant sciences.


Subject(s)
Nitrates , Vitamin B 12 , Cobalt , Nitrogen , Surface Properties , Vitamin B 12/chemistry
10.
Front Plant Sci ; 13: 849896, 2022.
Article in English | MEDLINE | ID: mdl-35574134

ABSTRACT

Limited knowledge about how nitrogen (N) dynamics are affected by climate change, weather variability, and crop management is a major barrier to improving the productivity and environmental performance of soybean-based cropping systems. To fill this knowledge gap, we created a systems understanding of agroecosystem N dynamics and quantified the impact of controllable (management) and uncontrollable (weather, climate) factors on N fluxes and soybean yields. We performed a simulation experiment across 10 soybean production environments in the United States using the Agricultural Production Systems sIMulator (APSIM) model and future climate projections from five global circulation models. Climate change (2020-2080) increased N mineralization (24%) and N2O emissions (19%) but decreased N fixation (32%), seed N (20%), and yields (19%). Soil and crop management practices altered N fluxes at a similar magnitude as climate change but in many different directions, revealing opportunities to improve soybean systems' performance. Among many practices explored, we identified two solutions with great potential: improved residue management (short-term) and water management (long-term). Inter-annual weather variability and management practices affected soybean yield less than N fluxes, which creates opportunities to manage N fluxes without compromising yields, especially in regions with adequate to excess soil moisture. This work provides actionable results (tradeoffs, synergies, directions) to inform decision-making for adapting crop management in a changing climate to improve soybean production systems.

11.
J Environ Qual ; 51(4): 708-718, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35426153

ABSTRACT

In the U.S. Corn Belt, annual croplands are the primary source of nitrate loading to waterways. Long periods of fallow cause most nitrate loss, but there is extreme interannual variability in the magnitude of nitrate loss due to weather. Using mean annual (2001-2018) flow-weighted nitrate-N concentration (FWNC; mg NO3 - -N L-1 ), load (kg NO3 - -N), and yield (kg NO3 - -N ha-1 cropland) for 29 watersheds, our objectives were (a) to quantify the magnitude and interannual variability of 5-yr moving average FWNC, load, and yield; (2) to estimate the probability of measuring 41% reductions in nitrate loss after isolating the effect of weather on nitrate loss by quantifying the interannual variability of nitrate loss in watersheds where there was no trend in 5-yr moving average nitrate loss (Iowa targets a 41% nitrate loss reduction from croplands); and (c) to identify factors that, in the absence of long-term trends in nitrate loss, best explain the interannual variability in nitrate loss. Averaged across all watersheds, the mean probability of measuring a statistically significant 41% reduction in FWNC across 15 yr, should it occur, was 96%. However, the probabilities of measuring 41% reductions in nitrate load and yield were only 44 and 32%. Across watersheds, soil organic matter, tile drainage, interannual variability of precipitation, and watershed area accounted for interannual variability in these nitrate loss indices. Our results have important implications for setting realistic timelines to measure nitrate loss reductions against the background of interannual weather variation and can help to target monitoring intensity across diverse watersheds.


Subject(s)
Agriculture , Nitrates , Iowa , Nitrates/analysis , Soil , Zea mays
12.
Front Plant Sci ; 12: 727021, 2021.
Article in English | MEDLINE | ID: mdl-34691106

ABSTRACT

Biological nitrogen (N) fixation is the most relevant process in soybeans (Glycine max L.) to satisfy plant N demand and sustain seed protein formation. Past studies describing N fixation for field-grown soybeans mainly focused on a single point time measurement (mainly toward the end of the season) and on the partial N budget (fixed-N minus seed N removal), overlooking the seasonal pattern of this process. Therefore, this study synthesized field datasets involving multiple temporal measurements during the crop growing season to characterize N fixation dynamics using both fixed-N (kg ha-1) and N derived from the atmosphere [Ndfa (%)] to define: (i) time to the maximum rate of N fixation (ß2), (ii) time to the maximum Ndfa (α2), and (iii) the cumulative fixed-N. The main outcomes of this study are that (1) the maximum rate of N fixation was around the beginning of pod formation (R3 stage), (2) time to the maximum Ndfa (%) was after full pod formation (R4), and (3) cumulative fixation was positively associated with the seasonal vapor-pressure deficit (VPD) and growth cycle length but negatively associated with soil clay content, and (4) time to the maximum N fixation rate (ß2) was positively impacted by season length and negatively impacted by high temperatures during vegetative growth (but positively for VPD, during the same period). Overall, variation in the timing of the maximum rate of N fixation occurred within a much narrower range of growth stages (R3) than the timing of the maximum Ndfa (%), which varied broadly from flowering (R1) to seed filing (R5-R6) depending on the evaluated studies. From a phenotyping standpoint, N fixation determinations after the R4 growth stage would most likely permit capturing both maximum fixed-N rate and maximum Ndfa (%). Further investigations that more closely screen the interplay between N fixation with soil-plant-environment factors should be pursued.

13.
mSystems ; 6(5): e0065121, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34581600

ABSTRACT

Cropping system diversity provides yield benefits that may result from shifts in the composition of root-associated bacterial and fungal communities, which either enhance nutrient availability or limit nutrient loss. We investigated whether temporal diversity of annual cropping systems (four versus two crops in rotation) influences the composition and metabolic activities of root-associated microbial communities in maize at a developmental stage when the peak rate of nitrogen uptake occurs. We monitored total (DNA-based) and potentially active (RNA-based) bacterial communities and total (DNA-based) fungal communities in the soil, rhizosphere, and endosphere. Cropping system diversity strongly influenced the composition of the soil microbial communities, which influenced the recruitment of the resident microbial communities and, in particular, the potentially active rhizosphere and endosphere bacterial communities. The diversified cropping system rhizosphere recruited a more diverse bacterial community (species richness), even though there was little difference in soil species richness between the two cropping systems. In contrast, fungal species richness was greater in the conventional rhizosphere, which was enriched in fungal pathogens; the diversified rhizosphere, however, was enriched in Glomeromycetes. While cropping system influenced endosphere community composition, greater correspondence between DNA- and RNA-based profiles suggests a higher representation of active bacterial populations. Cropping system diversity influenced the composition of ammonia oxidizers, which coincided with diminished potential nitrification activity and gross nitrate production rates, particularly in the rhizosphere. The results of our study suggest that diversified cropping systems shift the composition of the rhizosphere's active bacterial and total fungal communities, resulting in tighter coupling between plants and microbial processes that influence nitrogen acquisition and retention. IMPORTANCE Crops in simplified, low-diversity agroecosystems assimilate only a fraction of the inorganic nitrogen (N) fertilizer inputs. Much of this N fertilizer is lost to the environment as N oxides, which degrade water quality and contribute to climate change and loss of biodiversity. Ecologically inspired management may facilitate mutualistic interactions between plant roots and microbes to liberate nutrients when plants need them, while also decreasing nutrient loss and pathogen pressure. In this study, we investigate the effects of a conventional (2-year rotation, inorganic fertilization) and a diversified (4-year rotation, manure amendments) cropping system on the assembly of bacterial and fungal root-associated communities, at a maize developmental stage when nitrogen demand is beginning to increase. Our results indicate that agricultural management influences the recruitment of root-associated microbial communities and that diversified cropping systems have lower rates of nitrification (particularly in the rhizosphere), thereby reducing the potential for loss of nitrate from these systems.

14.
MycoKeys ; 82: 159-171, 2021.
Article in English | MEDLINE | ID: mdl-34475801

ABSTRACT

Pachyphlodes is a lineage of ectomycorrhizal, hypogeous, sequestrate ascomycete fungi native to temperate and subtropical forests in the Northern Hemisphere. Pachyphlodes species form ectomycorrhizae mainly with Fagales hosts. Here we describe two new species of Pachyphlodes, P.brunnea, and P.coalescens, based on morphological and phylogenetic analysis. Pachyphlodesbrunnea is distributed in the states of Tamaulipas and Nuevo León in northern México, occurring with Quercus and Juglans species. It is characterized by its dark brown peridium, white gleba, and spores with capitate columns. Pachyphlodescoalescens is distributed in the states of Michoacán and Tlaxcala in central and southwestern México co-occurring with Quercus and is distinguished by its reddish-brown peridium, light yellow gleba, and spore ornamentation. Both species, along with P.marronina, constitute the Marronina clade. This clade contains North American species characterized by a brown peridium and spores ornamented with capitate spines to coalesced spine tips that form a partial perispore.

15.
JAMA Netw Open ; 4(5): e217234, 2021 05 03.
Article in English | MEDLINE | ID: mdl-34009348

ABSTRACT

Importance: Accurate assessment of wound area and percentage of granulation tissue (PGT) are important for optimizing wound care and healing outcomes. Artificial intelligence (AI)-based wound assessment tools have the potential to improve the accuracy and consistency of wound area and PGT measurement, while improving efficiency of wound care workflows. Objective: To develop a quantitative and qualitative method to evaluate AI-based wound assessment tools compared with expert human assessments. Design, Setting, and Participants: This diagnostic study was performed across 2 independent wound centers using deidentified wound photographs collected for routine care (site 1, 110 photographs taken between May 1 and 31, 2018; site 2, 89 photographs taken between January 1 and December 31, 2019). Digital wound photographs of patients were selected chronologically from the electronic medical records from the general population of patients visiting the wound centers. For inclusion in the study, the complete wound edge and a ruler were required to be visible; circumferential ulcers were specifically excluded. Four wound specialists (2 per site) and an AI-based wound assessment service independently traced wound area and granulation tissue. Main Outcomes and Measures: The quantitative performance of AI tracings was evaluated by statistically comparing error measure distributions between test AI traces and reference human traces (AI vs human) with error distributions between independent traces by 2 humans (human vs human). Quantitative outcomes included statistically significant differences in error measures of false-negative area (FNA), false-positive area (FPA), and absolute relative error (ARE) between AI vs human and human vs human comparisons of wound area and granulation tissue tracings. Six masked attending physician reviewers (3 per site) viewed randomized area tracings for AI and human annotators and qualitatively assessed them. Qualitative outcomes included statistically significant difference in the absolute difference between AI-based PGT measurements and mean reviewer visual PGT estimates compared with PGT estimate variability measures (ie, range, standard deviation) across reviewers. Results: A total of 199 photographs were selected for the study across both sites; mean (SD) patient age was 64 (18) years (range, 17-95 years) and 127 (63.8%) were women. The comparisons of AI vs human with human vs human for FPA and ARE were not statistically significant. AI vs human FNA was slightly elevated compared with human vs human FNA (median [IQR], 7.7% [2.7%-21.2%] vs 5.7% [1.6%-14.9%]; P < .001), indicating that AI traces tended to slightly underestimate the human reference wound boundaries compared with human test traces. Two of 6 reviewers had a statistically higher frequency in agreement that human tracings met the standard area definition, but overall agreement was moderate (352 yes responses of 583 total responses [60.4%] for AI and 793 yes responses of 1166 total responses [68.0%] for human tracings). AI PGT measurements fell in the typical range of variation in interreviewer visual PGT estimates; however, visual PGT estimates varied considerably (mean range, 34.8%; mean SD, 19.6%). Conclusions and Relevance: This study provides a framework for evaluating AI-based digital wound assessment tools that can be extended to automated measurements of other wound features or adapted to evaluate other AI-based digital image diagnostic tools. As AI-based wound assessment tools become more common across wound care settings, it will be important to rigorously validate their performance in helping clinicians obtain accurate wound assessments to guide clinical care.


Subject(s)
Artificial Intelligence , Granulation Tissue/physiology , Wound Healing/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Clinical Competence , Female , Humans , Male , Middle Aged , Observer Variation , Photography , Software Design , Young Adult
16.
Glob Chang Biol ; 27(11): 2426-2440, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33609326

ABSTRACT

Increasing temperatures in the US Midwest are projected to reduce maize yields because warmer temperatures hasten reproductive development and, as a result, shorten the grain fill period. However, there is widespread expectation that farmers will mitigate projected yield losses by planting longer season hybrids that lengthen the grain fill period. Here, we ask: (a) how current hybrid maturity length relates to thermal availability of the local climate, and (b) if farmers are shifting to longer season hybrids in response to a warming climate. To address these questions, we used county-level Pioneer brand hybrid sales (Corteva Agriscience) across 17 years and 650 counties in 10 Midwest states (IA, IL, IN, MI, MN, MO, ND, OH, SD, and WI). Northern counties were shown to select hybrid maturities with growing degree day (GDD°C) requirements more closely related to the environmentally available GDD compared to central and southern counties. This measure, termed "thermal overlap," ranged from complete 106% in northern counties to a mere 63% in southern counties. The relationship between thermal overlap and latitude was fit using split-line regression and a breakpoint of 42.8°N was identified. Over the 17-years, hybrid maturities shortened across the majority of the Midwest with only a minority of counties lengthening in select northern and southern areas. The annual change in maturity ranged from -5.4 to 4.1 GDD year-1 with a median of -0.9 GDD year-1 . The shortening of hybrid maturity contrasts with widespread expectations of hybrid maturity aligning with magnitude of warming. Factors other than thermal availability appear to more strongly impact farmer decision-making such as the benefit of shorter maturity hybrids on grain drying costs, direct delivery to ethanol biorefineries, field operability, labor constraints, and crop genetics availability. Prediction of hybrid choice under future climate scenarios must include climatic factors, physiological-genetic attributes, socio-economic, and operational constraints.


Subject(s)
Climate Change , Zea mays , Acclimatization , Agriculture , Edible Grain
17.
Undersea Hyperb Med ; 47(3): 405-413, 2020.
Article in English | MEDLINE | ID: mdl-32931666

ABSTRACT

Objective: Given the high mortality and prolonged duration of mechanical ventilation of COVID-19 patients, we evaluated the safety and efficacy of hyperbaric oxygen for COVID-19 patients with respiratory distress. Methods: This is a single-center clinical trial of COVID-19 patients at NYU Winthrop Hospital from March 31 to April 28, 2020. Patients in this trial received hyperbaric oxygen therapy at 2.0 atmospheres of pressure in monoplace hyperbaric chambers for 90 minutes daily for a maximum of five total treatments. Controls were identified using propensity score matching among COVID-19 patients admitted during the same time period. Using competing-risks survival regression, we analyzed our primary outcome of inpatient mortality and secondary outcome of mechanical ventilation. Results: We treated 20 COVID-19 patients with hyperbaric oxygen. Ages ranged from 30 to 79 years with an oxygen requirement ranging from 2 to 15 liters on hospital days 0 to 14. Of these 20 patients, two (10%) were intubated and died, and none remain hospitalized. Among 60 propensity-matched controls based on age, sex, body mass index, coronary artery disease, troponin, D-dimer, hospital day, and oxygen requirement, 18 (30%) were intubated, 13 (22%) have died, and three (5%) remain hospitalized (with one still requiring mechanical ventilation). Assuming no further deaths among controls, we estimate that the adjusted subdistribution hazard ratios were 0.37 for inpatient mortality (p=0.14) and 0.26 for mechanical ventilation (p=0.046). Conclusion: Though limited by its study design, our results demonstrate the safety of hyperbaric oxygen among COVID-19 patients and strongly suggests the need for a well-designed, multicenter randomized control trial.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Hyperbaric Oxygenation/methods , Pneumonia, Viral/therapy , Propensity Score , Respiratory Distress Syndrome/therapy , Adult , Aged , Atmospheric Pressure , COVID-19 , Case-Control Studies , Coronavirus Infections/complications , Coronavirus Infections/mortality , Female , Humans , Hyperbaric Oxygenation/adverse effects , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Respiration, Artificial/mortality , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Risk Factors , SARS-CoV-2 , Safety , Survival Analysis , Time Factors , Treatment Outcome
18.
Front Plant Sci ; 11: 62, 2020.
Article in English | MEDLINE | ID: mdl-32117398

ABSTRACT

Despite the detrimental impact that excess moisture can have on soybean (Glycine max [L.] Merr) yields, most of today's crop models do not capture soybean's dynamic responses to waterlogged conditions. In light of this, we synthesized literature data and used the APSIM software to enhance the modeling capacity to simulate plant growth, development, and N fixation response to flooding. Literature data included greenhouse and field experiments from across the U.S. that investigated the impact of flood timing and duration on soybean. Five datasets were used for model parameterization of new functions and three datasets were used for testing. Improvements in prediction accuracy were quantified by comparing model performance before and after the implementation of new stage-dependent excess water functions for phenology, photosynthesis and N-fixation. The relative root mean square error (RRMSE) for yield predictions improved by 26% and the RRMSE predictions of biomass improved by 40%. Extensive model testing found that the improved model accurately simulates plant responses to flooding including how these responses change with flood timing and duration. When used to project soybean response to future climate scenarios, the model showed that intense rain events had a greater negative effect on yield than a 25% increase in rainfall distributed over 1 or 3 month(s). These developments advance our ability to understand, predict and, thereby, mitigate yield loss as increases in climatic volatility lead to more frequent and intense flooding events in the future.

19.
ACS Appl Mater Interfaces ; 11(32): 29195-29206, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31318522

ABSTRACT

There is an unmet need for improved fertilizer management in agriculture. Continuous monitoring of soil nitrate would address this need. This paper reports an all-solid-state miniature potentiometric soil sensor that works in direct contact with soils to monitor nitrate-nitrogen (NO3--N) in soil solution with parts-per-million (ppm) resolution. A working electrode is formed from a novel nanocomposite of poly(3-octyl-thiophene) and molybdenum disulfide (POT-MoS2) coated on a patterned Au electrode and covered with a nitrate-selective membrane using a robotic dispenser. The POT-MoS2 layer acts as an ion-to-electron transducing layer with high hydrophobicity and redox properties. The modification of the POT chain with MoS2 increases both conductivity and anion exchange, while minimizing the formation of a thin water layer at the interface between the Au electrode and the ion-selective membrane, which is notorious for solid-state potentiometric ion sensors. Therefore, the use of POT-MoS2 results in an improved sensitivity and selectivity of the working electrode. The reference electrode comprises a screen-printed silver/silver chloride (Ag/AgCl) electrode covered by a protonated Nafion layer to prevent chloride (Cl-) leaching in long-term measurements. This sensor was calibrated using both standard and extracted soil solutions, exhibiting a dynamic range that includes all concentrations relevant for agricultural applications (1-1500 ppm NO3--N). With the POT-MoS2 nanocomposite, the sensor offers a sensitivity of 64 mV/decade for nitrate detection, compared to 48 mV/decade for POT and 38 mV/decade for MoS2. The sensor was embedded into soil slurries where it accurately monitored nitrate for a duration of 27 days.

20.
Am Surg ; 85(3): 303-305, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30947779

ABSTRACT

Antiplatelet medication use in the perioperative period for elective surgical procedures remains controversial. We hypothesized that for elective hernioplasty, the continuation of antiplatelet agents would not increase postoperative complications. A single surgeon prospectively tracked all elective hernia repairs performed. All patients were included except those on anticoagulation therapy. Patients already on antiplatelet therapy (APT) continued their regimen throughout the perioperative period, whereas those who were not remained off antiplatelet medications. All patients had postoperative visits between 7 and 10 days at which point they were evaluated with complications documented. One thousand four patients underwent open hernia repair. Two hundred sixty-seven patients were taking APT, whereas 737 were not. The mean age of the antiplatelet group was greater than those not on APT (66 vs 51 years old, P < 0.0001). Ecchymosis occurred more frequently in the APT group than in those not on APT (9.36% vs 2.71%, P = 0.0005). This was the only statistically significant difference in postoperative complications noted between these two groups. Patients taking clopidogrel alone or a combination of aspirin and clopidogrel had a significantly higher rate of ecchymosis compared with those on other antiplatelet regiments (10%, 21.6%, and 7.4%, respectively, P = 0.047). There were no postoperative hematomas, bleeding complications, urinary retention, or any patients who required cessation of antiplatelet medications. Continuation of APT in the perioperative period for elective hernia repair did not result in an increased frequency of postoperative complications except for ecchymosis development. We conclude that the continuation of antiplatelet medications throughout the perioperative period of elective hernioplasty is safe.


Subject(s)
Hernia, Abdominal/surgery , Herniorrhaphy/adverse effects , Incisional Hernia/surgery , Platelet Aggregation Inhibitors/administration & dosage , Postoperative Complications/epidemiology , Adult , Aged , Aged, 80 and over , Cohort Studies , Elective Surgical Procedures , Female , Humans , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...