ABSTRACT
Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.
Subject(s)
Brain Mapping , Music , Brain Mapping/methods , Electroencephalography/methods , Brain/physiology , Emotions/physiology , Auditory Perception/physiology , Music/psychology , Acoustic StimulationABSTRACT
An Open Brain-Computer Interface (OpenBCI) provides unparalleled freedom and flexibility through open-source hardware and firmware at a low-cost implementation. It exploits robust hardware platforms and powerful software development kits to create customized drivers with advanced capabilities. Still, several restrictions may significantly reduce the performance of OpenBCI. These limitations include the need for more effective communication between computers and peripheral devices and more flexibility for fast settings under specific protocols for neurophysiological data. This paper describes a flexible and scalable OpenBCI framework for electroencephalographic (EEG) data experiments using the Cyton acquisition board with updated drivers to maximize the hardware benefits of ADS1299 platforms. The framework handles distributed computing tasks and supports multiple sampling rates, communication protocols, free electrode placement, and single marker synchronization. As a result, the OpenBCI system delivers real-time feedback and controlled execution of EEG-based clinical protocols for implementing the steps of neural recording, decoding, stimulation, and real-time analysis. In addition, the system incorporates automatic background configuration and user-friendly widgets for stimuli delivery. Motor imagery tests the closed-loop BCI designed to enable real-time streaming within the required latency and jitter ranges. Therefore, the presented framework offers a promising solution for tailored neurophysiological data processing.
Subject(s)
Brain-Computer Interfaces , Electroencephalography/methods , Software , Imagery, Psychotherapy , ElectrodesABSTRACT
The Electroencephalography (EEG)-based motor imagery (MI) paradigm is one of the most studied technologies for Brain-Computer Interface (BCI) development. Still, the low Signal-to-Noise Ratio (SNR) poses a challenge when constructing EEG-based BCI systems. Moreover, the non-stationary and nonlinear signal issues, the low-spatial data resolution, and the inter- and intra-subject variability hamper the extraction of discriminant features. Indeed, subjects with poor motor skills have difficulties in practicing MI tasks against low SNR scenarios. Here, we propose a subject-dependent preprocessing approach that includes the well-known Surface Laplacian Filtering and Independent Component Analysis algorithms to remove signal artifacts based on the MI performance. In addition, power- and phase-based functional connectivity measures are studied to extract relevant and interpretable patterns and identify subjects of inefficency. As a result, our proposal, Subject-dependent Artifact Removal (SD-AR), improves the MI classification performance in subjects with poor motor skills. Consequently, electrooculography and volume-conduction EEG artifacts are mitigated within a functional connectivity feature-extraction strategy, which favors the classification performance of a straightforward linear classifier.
Subject(s)
Artifacts , Brain-Computer Interfaces , Algorithms , Electroencephalography , Humans , Imagery, Psychotherapy , Signal Processing, Computer-AssistedABSTRACT
Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms' self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source-target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.
Subject(s)
Brain-Computer Interfaces , Imagination , Electroencephalography , Humans , Machine Learning , Surveys and QuestionnairesABSTRACT
Motion capture (Mocap) data are widely used as time series to study human movement. Indeed, animation movies, video games, and biomechanical systems for rehabilitation are significant applications related to Mocap data. However, classifying multi-channel time series from Mocap requires coding the intrinsic dependencies (even nonlinear relationships) between human body joints. Furthermore, the same human action may have variations because the individual alters their movement and therefore the inter/intraclass variability. Here, we introduce an enhanced Hilbert embedding-based approach from a cross-covariance operator, termed EHECCO, to map the input Mocap time series to a tensor space built from both 3D skeletal joints and a principal component analysis-based projection. Obtained results demonstrate how EHECCO represents and discriminates joint probability distributions as kernel-based evaluation of input time series within a tensor reproducing kernel Hilbert space (RKHS). Our approach achieves competitive classification results for style/subject and action recognition tasks on well-known publicly available databases. Moreover, EHECCO favors the interpretation of relevant anthropometric variables correlated with players' expertise and acted movement on a Tennis-Mocap database (also publicly available with this work). Thereby, our EHECCO-based framework provides a unified representation (through the tensor RKHS) of the Mocap time series to compute linear correlations between a coded metric from joint distributions and player properties, i.e., age, body measurements, and sport movement (action class).
Subject(s)
Algorithms , Movement , Humans , Motion , Principal Component AnalysisABSTRACT
Motor imaging (MI) induces recovery and neuroplasticity in neurophysical regulation. However, a non-negligible portion of users presents insufficient coordination skills of sensorimotor cortex control. Assessments of the relationship between wakefulness and tasks states are conducted to foster neurophysiological and mechanistic interpretation in MI-related applications. Thus, to understand the organization of information processing, measures of functional connectivity are used. Also, models of neural network regression prediction are becoming popular, These intend to reduce the need for extracting features manually. However, predicting MI practicing's neurophysiological inefficiency raises several problems, like enhancing network regression performance because of the overfitting risk. Here, to increase the prediction performance, we develop a deep network regression model that includes three procedures: leave-one-out cross-validation combined with Monte Carlo dropout layers, subject clustering of MI inefficiency, and transfer learning between neighboring runs. Validation is performed using functional connectivity predictors extracted from two electroencephalographic databases acquired in conditions close to real MI applications (150 users), resulting in a high prediction of pretraining desynchronization and initial training synchronization with adequate physiological interpretability.
Subject(s)
Brain-Computer Interfaces , Sensorimotor Cortex , Electroencephalography , Imagination , Motor SkillsABSTRACT
Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based â2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.
ABSTRACT
Evaluation of brain dynamics elicited by motor imagery (MI) tasks can contribute to clinical and learning applications. The multi-subject analysis is to make inferences on the group/population level about the properties of MI brain activity. However, intrinsic neurophysiological variability of neural dynamics poses a challenge for devising efficient MI systems. Here, we develop a time-frequency model for estimating the spatial relevance of common neural activity across subjects employing an introduced statistical thresholding rule. In deriving multi-subject spatial maps, we present a comparative analysis of three feature extraction methods: Common Spatial Patterns, Functional Connectivity, and Event-Related De/Synchronization. In terms of interpretability, we evaluate the effectiveness in gathering MI data from collective populations by introducing two assumptions: (i) Non-linear assessment of the similarity between multi-subject data originating the subject-level dynamics; (ii) Assessment of time-varying brain network responses according to the ranking of individual accuracy performed in distinguishing distinct motor imagery tasks (left-hand vs. right-hand). The obtained validation results indicate that the estimated collective dynamics differently reflect the flow of sensorimotor cortex activation, providing new insights into the evolution of MI responses.
ABSTRACT
Assessment of brain dynamics elicited by motor imagery (MI) tasks contributes to clinical and learning applications. In this regard, Event-Related Desynchronization/Synchronization (ERD/S) is computed from Electroencephalographic signals, which show considerable variations in complexity. We present an Entropy-based method, termed VQEnt, for estimation of ERD/S using quantized stochastic patterns as a symbolic space, aiming to improve their discriminability and physiological interpretability. The proposed method builds the probabilistic priors by assessing the Gaussian similarity between the input measured data and their reduced vector-quantized representation. The validating results of a bi-class imagine task database (left and right hand) prove that VQEnt holds symbols that encode several neighboring samples, providing similar or even better accuracy than the other baseline sample-based algorithms of Entropy estimation. Besides, the performed ERD/S time-series are close enough to the trajectories extracted by the variational percentage of EEG signal power and fulfill the physiological MI paradigm. In BCI literate individuals, the VQEnt estimator presents the most accurate outcomes at a lower amount of electrodes placed in the sensorimotor cortex so that reduced channel set directly involved with the MI paradigm is enough to discriminate between tasks, providing an accuracy similar to the performed by the whole electrode set.
ABSTRACT
Motor Imagery (MI) promotes motor learning in activities, like developing professional motor skills, sports gestures, and patient rehabilitation. However, up to 30% of users may not develop enough coordination skills after training sessions because of inter and intra-subject variability. Here, we develop a data-driven estimator, termed Deep Regression Network (DRN), which jointly extracts and performs the regression analysis in order to assess the efficiency of the individual brain networks in practicing MI tasks. The proposed double-stage estimator initially learns a pool of deep patterns, extracted from the input data, in order to feed a neural regression model, allowing for infering the distinctiveness between subject assemblies having similar variability. The results, which were obtained on real-world MI data, prove that the DRN estimator fosters pre-training neural desynchronization and initial training synchronization to predict the bi-class accuracy response, thus providing a better understanding of the Brain-Computer Interface inefficiency of subjects.
ABSTRACT
The effectiveness of brain magnetic resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of associated tissues or anatomical structures. We introduce an enhanced brain segmentation approach of Bayesian label fusion that includes the construction of adaptive target-specific probabilistic priors using atlases ranked by kernel-based similarity metrics to deal with the anatomical variability of collected MRI data. In particular, the developed segmentation approach appraises patch-based voxel representation to enhance the voxel embedding in spaces with increased tissue discrimination, as well as the construction of a neighborhood-dependent model that addresses the label assignment of each region with a different patch complexity. To measure the similarity between the target and training atlases, we propose a tensor-based kernel metric that also includes the training labeling set. We evaluate the proposed approach, adaptive Bayesian label fusion using kernel-based similarity metrics, in the specific case of hippocampus segmentation of five benchmark MRI collections, including ADNI dataset, resulting in an increased performance (assessed through the Dice index) as compared to other recent works.
ABSTRACT
Accurate source localization of electroencephalographic (EEG) signals requires detailed information about the geometry and physical properties of head tissues. Indeed, these strongly influence the propagation of neural activity from the brain to the sensors. Finite difference methods (FDMs) are head modelling approaches relying on volumetric data information, which can be directly obtained using magnetic resonance (MR) imaging. The specific goal of this study is to develop a computationally efficient FDM solution that can flexibly integrate voxel-wise conductivity and anisotropy information. Given the high computational complexity of FDMs, we pay particular attention to attain a very low numerical error, as evaluated using exact analytical solutions for spherical volume conductor models. We then demonstrate the computational efficiency of our FDM numerical solver, by comparing it with alternative solutions. Finally, we apply the developed head modelling tool to high-resolution MR images from a real experimental subject, to demonstrate the potential added value of incorporating detailed voxel-wise conductivity and anisotropy information. Our results clearly show that the developed FDM can contribute to a more precise head modelling, and therefore to a more reliable use of EEG as a brain imaging tool.
Subject(s)
Electroencephalography/methods , Neuroimaging/methods , Algorithms , Anisotropy , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Data Interpretation, Statistical , Electroencephalography/statistics & numerical data , Head , Humans , Magnetic Resonance Imaging , Models, Anatomic , Reproducibility of ResultsABSTRACT
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand.
ABSTRACT
Alzheimer's disease (AD) is the kind of dementia that affects the most people around the world. Therefore, an early identification supporting effective treatments is required to increase the life quality of a wide number of patients. Recently, computer-aided diagnosis tools for dementia using Magnetic Resonance Imaging scans have been successfully proposed to discriminate between patients with AD, mild cognitive impairment, and healthy controls. Most of the attention has been given to the clinical data, provided by initiatives as the ADNI, supporting reliable researches on intervention, prevention, and treatments of AD. Therefore, there is a need for improving the performance of classification machines. In this paper, we propose a kernel framework for learning metrics that enhances conventional machines and supports the diagnosis of dementia. Our framework aims at building discriminative spaces through the maximization of center kernel alignment function, aiming at improving the discrimination of the three considered neurological classes. The proposed metric learning performance is evaluated on the widely-known ADNI database using three supervised classification machines (k-nn, SVM and NNs) for multi-class and bi-class scenarios from structural MRIs. Specifically, from ADNI collection 286 AD patients, 379 MCI patients and 231 healthy controls are used for development and validation of our proposed metric learning framework. For the experimental validation, we split the data into two subsets: 30% of subjects used like a blindfolded assessment and 70% employed for parameter tuning. Then, in the preprocessing stage, each structural MRI scan a total of 310 morphological measurements are automatically extracted from by FreeSurfer software package and concatenated to build an input feature matrix. Obtained test performance results, show that including a supervised metric learning improves the compared baseline classifiers in both scenarios. In the multi-class scenario, we achieve the best performance (accuracy 60.1%) for pretrained 1-layered NN, and we obtain measures over 90% in the average for HC vs. AD task. From the machine learning point of view, our proposal enhances the classifier performance by building spaces with a better class separability. From the clinical application, our enhancement results in a more balanced performance in each class than the compared approaches from the CADDementia challenge by increasing the sensitivity of pathological groups and the specificity of healthy controls.
ABSTRACT
Presurgical evaluation of brain neural activity is commonly carried out in refractory epilepsy patients to delineate as accurately as possible the seizure onset zone (SOZ) before epilepsy surgery. In practice, any subjective interpretation of electroencephalographic (EEG) recordings is hindered mainly because of the highly stochastic behavior of the epileptic activity. We propose a new method for dynamic source connectivity analysis that aims to accurately localize the seizure onset zones by explicitly including temporal, spectral, and spatial information of the brain neural activity extracted from EEG recordings. In particular, we encode the source nonstationarities in three critical stages of processing: Inverse problem solution, estimation of the time courses extracted from the regions of interest, and connectivity assessment. With the aim to correctly encode all temporal dynamics of the seizure-related neural network, a directed functional connectivity measure is employed to quantify the information flow variations over the time window of interest. Obtained results on simulated and real EEG data confirm that the proposed approach improves the accuracy of SOZ localization.
ABSTRACT
We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast.
ABSTRACT
Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing.
Subject(s)
Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Dementia/diagnostic imaging , Magnetic Resonance Imaging , Aged , Aged, 80 and over , Algorithms , Alzheimer Disease/pathology , Automation , Biomarkers/metabolism , Case-Control Studies , Cognitive Dysfunction/pathology , Dementia/pathology , Diagnosis, Computer-Assisted , Female , Humans , Male , Middle Aged , Models, Statistical , Neural Networks, Computer , Neurons/pathology , Principal Component Analysis , ROC CurveABSTRACT
BACKGROUND: Electrogram-guided ablation procedures have been proposed as an alternative strategy consisting of either mapping and ablating focal sources or targeting complex fractionated electrograms in atrial fibrillation (AF). However, the incomplete understanding of the mechanism of AF makes difficult the decision of detecting the target sites. To date, feature extraction from electrograms is carried out mostly based on the time-domain morphology analysis and non-linear features. However, their combination has been reported to achieve better performance. Besides, most of the inferring approaches applied for identifying the levels of fractionation are supervised, which lack of an objective description of fractionation. This aspect complicates their application on EGM-guided ablation procedures. METHODS: This work proposes a semi-supervised clustering method of four levels of fractionation. In particular, we make use of the spectral clustering that groups a set of widely used features extracted from atrial electrograms. We also introduce a new atrial-deflection-based feature to quantify the fractionated activity. Further, based on the sequential forward selection, we find the optimal subset that provides the highest performance in terms of the cluster validation. The method is tested on external validation of a labeled database. The generalization ability of the proposed training approach is tested to aid semi-supervised learning on unlabeled dataset associated with anatomical information recorded from three patients. RESULTS: A joint set of four extracted features, based on two time-domain morphology analysis and two non-linear dynamics, are selected. To discriminate between four considered levels of fractionation, validation on a labeled database performs a suitable accuracy (77.6 %). Results show a congruence value of internal validation index among tested patients that is enough to reconstruct the patterns over the atria to located critical sites with the benefit of avoiding previous manual classification of AF types. CONCLUSIONS: To the best knowledge of the authors, this is the first work reporting semi-supervised clustering for distinguishing patterns in fractionated electrograms. The proposed methodology provides high performance for the detection of unknown patterns associated with critical EGM morphologies. Particularly, obtained results of semi-supervised training show the advantage of demanding fewer labeled data and less training time without significantly compromising accuracy. This paper introduces a new method, providing an objective scheme that enables electro-physiologist to recognize the diverse EGM morphologies reliably.
Subject(s)
Electrophysiologic Techniques, Cardiac/methods , Heart Atria/anatomy & histology , Signal Processing, Computer-Assisted , Supervised Machine Learning , Cluster Analysis , Databases, Factual , Humans , Nonlinear DynamicsABSTRACT
Learning from imbalanced data sets presents an important challenge to the machine learning community. Traditional classification methods, seeking to minimize the overall error rate of the whole training set, do not perform well on imbalanced data since they assume a relatively balanced class distribution and put too much strength on the majority class. This is a common scenario when predicting sub-cellular locations of proteins since proteins belonging to certain specific locations are naturally more abundant or have been more extensively studied. In this work, a new method to learn from imbalanced data, called SwarmBoost, is proposed in order to reduce overlapping and noise of imbalanced datasets and improve prediction performances. The method combines oversampling, subsampling based on particle swarm optimization and ensemble methods. Our results show that SwarmBoost equals and in several cases outperforms other common boosting algorithms like DataBoost-Im and AdaBoost, constituting a useful tool for improving sub-cellular location predictions.
Subject(s)
Algorithms , Proteins/metabolism , Subcellular Fractions/metabolismABSTRACT
In this work an entropy based nonlinear analysis of pathological voices is presented. The complexity analysis is carried out by means of six different entropies, including three measures derived from the entropy rate of Markov chains. The aim is to characterize the divergence of the trajectories and theirs directions into the state space of Markov Chains. By employing these measures in conjunction with conventional entropy features, it is possible to improve the discrimination capabilities of the nonlinear analysis in the automatic detection of pathological voices.