Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Ann Oncol ; 29(3): 700-706, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29216356

ABSTRACT

Background: A major limitation of circulating tumor DNA (ctDNA) for somatic mutation detection has been the low level of ctDNA found in a subset of cancer patients. We investigated whether using a combined isolation of exosomal RNA (exoRNA) and cell-free DNA (cfDNA) could improve blood-based liquid biopsy for EGFR mutation detection in non-small-cell lung cancer (NSCLC) patients. Patients and methods: Matched pretreatment tumor and plasma were collected from 84 patients enrolled in TIGER-X (NCT01526928), a phase 1/2 study of rociletinib in mutant EGFR NSCLC patients. The combined isolated exoRNA and cfDNA (exoNA) was analyzed blinded for mutations using a targeted next-generation sequencing panel (EXO1000) and compared with existing data from the same samples using analysis of ctDNA by BEAMing. Results: For exoNA, the sensitivity was 98% for detection of activating EGFR mutations and 90% for EGFR T790M. The corresponding sensitivities for ctDNA by BEAMing were 82% for activating mutations and 84% for T790M. In a subgroup of patients with intrathoracic metastatic disease (M0/M1a; n = 21), the sensitivity increased from 26% to 74% for activating mutations (P = 0.003) and from 19% to 31% for T790M (P = 0.5) when using exoNA for detection. Conclusions: Combining exoRNA and ctDNA increased the sensitivity for EGFR mutation detection in plasma, with the largest improvement seen in the subgroup of M0/M1a disease patients known to have low levels of ctDNA and poses challenges for mutation detection on ctDNA alone. Clinical Trials: NCT01526928.


Subject(s)
Carcinoma, Non-Small-Cell Lung/blood , Circulating Tumor DNA/blood , DNA Mutational Analysis/methods , Lung Neoplasms/blood , RNA/blood , Acrylamides/therapeutic use , Adult , Aged , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Exosomes , Female , Genes, erbB-1 , Humans , Liquid Biopsy/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Middle Aged , Pyrimidines/therapeutic use , Sensitivity and Specificity
3.
Clin Chem ; 58(7): 1130-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22587896

ABSTRACT

BACKGROUND: Low-level mutations in clinical tumor samples often reside below mutation detection limits, thus leading to false negatives that may impact clinical diagnosis and patient management. COLD-PCR (coamplification at lower denaturation temperature PCR) is a technology that magnifies unknown mutations during PCR, thus enabling downstream mutation detection. However, a practical difficulty in applying COLD-PCR has been the requirement for strict control of the denaturation temperature for a given sequence, to within ±0.3 °C. This requirement precludes simultaneous mutation enrichment in sequences of substantially different melting temperature (T(m)) and limits the technique to a single sequence at a time. We present a temperature-tolerant (TT) approach (TT-COLD-PCR) that reduces this obstacle. METHODS: We describe thermocycling programs featuring a gradual increase of the denaturation temperature during COLD-PCR. This approach enabled enrichment of mutations when the cycling achieves the appropriate critical denaturation temperature of each DNA amplicon that is being amplified. Validation was provided for KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) and TP53 (tumor protein p53) exons 6-9 by use of dilutions of mutated DNA, clinical cancer samples, and plasma-circulating DNA. RESULTS: A single thermocycling program with a denaturation-temperature window of 2.5-3.0 °C enriches mutations in all DNA amplicons simultaneously, despite their different T(m)s. Mutation enrichments of 6-9-fold were obtained with TT-full-COLD-PCR. Higher mutation enrichments were obtained for the other 2 forms of COLD-PCR, fast-COLD-PCR, and ice-COLD-PCR. CONCLUSIONS: Low-level mutations in diverse amplicons with different T(m)s can be mutation enriched via TT-COLD-PCR provided that their T(m)s fall within the denaturation-temperature window applied during amplification. This approach enables simultaneous enrichment of mutations in several amplicons and increases significantly the versatility of COLD-PCR.


Subject(s)
DNA Mutational Analysis/methods , DNA/genetics , Polymerase Chain Reaction/methods , Brain Neoplasms/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , DNA/analysis , Glioblastoma/genetics , Humans , Lung Neoplasms/genetics , Male , Mutation , Nucleic Acid Denaturation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Temperature , Tumor Suppressor Protein p53/genetics , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...