Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 737: 140011, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32569902

ABSTRACT

Commercial assets comprise buildings, machinery and equipment, which are susceptible to floods. Existing damage models and exposure estimation methods for this sector have limited transferability between flood events and therefore limited potential for pan-European applications. In this study we introduce two methodologies aiming at improving commercial flood damage modelling: (1) disaggregation of economic statistics to obtain detailed building-level estimates of replacement costs of commercial assets; (2) a Bayesian Network (BN) damage model based primarily on post-disaster company surveys carried out in Germany. The BN model is probabilistic and provides probability distributions of estimated losses, and as such quantitative uncertainty information. The BN shows good accuracy of predictions of building losses, though overestimates machinery/equipment loss. To test its suitability for pan-European flood modelling, the BN was applied to three case studies, comprising a coastal flood in France (2010) and fluvial floods in Saxony (2013) and Italy (2014). Overall difference between modelled and reported average loss per company was only 2-19% depending on the case study. Additionally, the BN model achieved better results than six alternative damage models in those case studies (except for one model in the Italian case study). Further, our exposure estimates mostly resulted in better predictions of the damage models compared to previously published pan-European exposure data, which tend to overestimate exposure. All in all, the methods allow easy modelling of commercial flood losses in the whole of Europe, since they are applicable even if only publicly-available datasets are obtainable. The methods achieve a higher accuracy than alternative approaches, and inherently provide confidence intervals, which is particularly valuable for decision making under high uncertainty.

2.
Nature ; 573(7772): 108-111, 2019 09.
Article in English | MEDLINE | ID: mdl-31462777

ABSTRACT

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Subject(s)
Climate Change/statistics & numerical data , Floods/statistics & numerical data , Rivers , Climate Change/history , Europe , Floods/history , Floods/prevention & control , Geographic Mapping , History, 20th Century , History, 21st Century , Rain , Seasons , Time Factors
3.
Sci Total Environ ; 622-623: 337-348, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29220761

ABSTRACT

In large areas of the Italian Northern Apennines, hundreds of low-yield springs provide water for drinking and industrial purposes, with short groundwater flow paths being formed within fractured sedimentary rock units. This hydrogeological setting results in spring water discharges that closely follow meteoric water recharge patterns, leading to low-flow periods concentrated in the summer/early autumn. Therefore, the springs' outflow can be very sensitive to a shortage in water recharge, as it was the case in 2003 and 2017, when a prolonged period of drought caused severe water management issues. This work analyses how a group of such springs responds to climate change. In particular, we first validated a hydrological rainfall-runoff model on the basis of daily discharge data collected between 2013 and 2016. Then, outflows were simulated for baseline (1984-2013) and future periods (2021-2050) using weather data provided by five RCM-GCM combinations. Finally, we performed statistical analyses aiming to examine the intra-annual variability in discharge rates, low-flow indices, flow-duration curves and the length of low-flows. Results show no evidence of change in mean annual discharges, but future climate estimates suggest a slight change to seasonal discharges in the future, with a marked increase of discharge during winter and spring, and a decrease in summer and autumn. Q(95) and 7Q10 low-flow indices (i.e. the daily discharge exceeded 95% of the time and the minimum weekly discharge associated with a 10-year recurrence interval, respectively) are significantly affected by the climate change (-21.8% and -25.0%, respectively), while droughts are expected to be more frequent: the number of years with a consecutive low-flow between 51 and 100days to increase by a third, and between 101 and 150 to duplicate.

4.
Science ; 357(6351): 588-590, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28798129

ABSTRACT

A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...