Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37889263

ABSTRACT

MOTIVATION: The Balanced Minimum Evolution (BME) is a powerful distance based phylogenetic estimation model introduced by Desper and Gascuel and nowadays implemented in popular tools for phylogenetic analyses. It was proven to be computationally less demanding than more sophisticated estimation methods, e.g. maximum likelihood or Bayesian inference while preserving the statistical consistency and the ability to run with almost any kind of data for which a dissimilarity measure is available. BME can be stated in terms of a nonlinear non-convex combinatorial optimization problem, usually referred to as the Balanced Minimum Evolution Problem (BMEP). Currently, the state-of-the-art among approximate methods for the BMEP is represented by FastME (version 2.0), a software which implements several deterministic phylogenetic construction heuristics combined with a local search on specific neighbourhoods derived by classical topological tree rearrangements. These combinations, however, may not guarantee convergence to close-to-optimal solutions to the problem due to the lack of solution space exploration, a phenomenon which is exacerbated when tackling molecular datasets characterized by a large number of taxa. RESULTS: To overcome such convergence issues, in this article, we propose a novel metaheuristic, named PhyloES, which exploits the combination of an exploration phase based on Evolution Strategies, a special type of evolutionary algorithm, with a refinement phase based on two local search algorithms. Extensive computational experiments show that PhyloES consistently outperforms FastME, especially when tackling larger datasets, providing solutions characterized by a shorter tree length but also significantly different from the topological perspective. AVAILABILITY AND IMPLEMENTATION: The software and the data are available at https://github.com/andygaspar/PHYLOES.


Subject(s)
Algorithms , Models, Genetic , Phylogeny , Bayes Theorem , Software , Evolution, Molecular
2.
Stud Health Technol Inform ; 303: 26-35, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347601

ABSTRACT

Accessibility is a central element of any responsible and sustainable tourism policy: it is both a human rights imperative, and an exceptional business opportunity, as mentioned by UNWTO Secretary-General Taleb Rifai. Accessible tourism for all is not only about providing access to people with disabilities, but also addresses the creation of universally designed environments that can support people that may have temporary disabilities, families with young children, the ever-increasing ageing population, as well as creating a safer environment for employees at work. It must also be considered that accessible tourism benefits everyone: as more individuals enjoy the opportunity to travel, the tourism industry gets more visitors, longer seasons and new incomes. This contribution presents the approach taken within the Italy-Croatia Interreg Project "E-Chain - Enhanced Connectivity and Harmonization of data for the Adriatic Intermodal Network", focused on the provision of useful and personalized information for the traveling user.


Subject(s)
Disabled Persons , Travel , Child , Humans , Child, Preschool , Industry , Commerce , Croatia
3.
Nat Commun ; 14(1): 393, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36693823

ABSTRACT

Three-terminal thermal analogies to electrical transistors have been proposed for use in thermal amplification, thermal switching, or thermal logic, but have not yet been demonstrated experimentally. Here, we design and fabricate a three-terminal magnetic thermal transistor in which the gate temperature controls the source-drain heat flow by toggling the source-drain thermal conductance from ON to OFF. The centimeter-scale thermal transistor uses gate-temperature dependent magnetic forces to actuate motion of a thermally conducting shuttle, providing thermal contact between source and drain in the ON state while breaking contact in the OFF state. We measure source-drain thermal switch ratios of 109 ± 44 in high vacuum with gate switching temperatures near 25 °C. Thermal measurements show that small heat flows into the gate can be used to drive larger heat flows from source to drain, and that the switching is reversible over >150 cycles. Proof-of-concept thermal circuit demonstrations show that magnetic thermal transistors can enable passive or active heat flow routing or can be combined to create Boolean thermal logic gates. This work will allow thermal researchers to explore the behavior of nonlinear thermal circuits using three-terminal transistors and will motivate further research developing thermal transistors for advanced thermal control.

4.
CEAS Aeronaut J ; 12(4): 847-862, 2021.
Article in English | MEDLINE | ID: mdl-34484463

ABSTRACT

The concept of strategic traffic planning that takes into account changing airspace configurations, their capacity, and allows the quantification of flight flexibility is presented in this paper: the visualization of the results and an example of possible use. The concept is implemented through two deterministic optimization models. Here, we focus on the output of the models, which identifies the departure times, trajectories, flight flexibility and the list of saturated sector-hours throughout the day, based on the configurations used during the day. In order to make the output understandable to various stakeholders, we use a visualization tool and a set of performance indicators. The information on the saturated sectors, and their impact on flexibility (criticality index) is taken as an input in the example of mitigation action application by Air Navigation Service Providers, aimed at improving the situation. A mitigation strategy of increasing capacity of saturated airspace is implemented, and results show that the improvements in flexibility can be achieved.

5.
Sensors (Basel) ; 15(7): 15443-67, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26134104

ABSTRACT

Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.

SELECTION OF CITATIONS
SEARCH DETAIL
...