Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 452(7186): 429-35, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18344982

ABSTRACT

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase beta (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.


Subject(s)
Gene Regulatory Networks/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Metabolic Syndrome/genetics , Obesity/genetics , Adipose Tissue/metabolism , Animals , Apolipoprotein A-II/genetics , Chromosomes, Mammalian/genetics , Female , Linkage Disequilibrium , Lipoprotein Lipase/genetics , Liver/metabolism , Lod Score , Macrophages/metabolism , Male , Membrane Proteins/genetics , Metabolic Syndrome/enzymology , Metabolic Syndrome/metabolism , Mice , Obesity/enzymology , Obesity/metabolism , Phenotype , Phosphoprotein Phosphatases/deficiency , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Quantitative Trait Loci , Reproducibility of Results , Ribosomal Proteins/genetics
2.
Genomics ; 86(5): 505-17, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16126366

ABSTRACT

The use of inbred strains of mice to dissect the genetic complexity of common diseases offers a viable alternative to human studies, given the control over experimental parameters that can be exercised. Central to efforts to map susceptibility loci for common diseases in mice is a comprehensive map of DNA variation among the common inbred strains of mice. Here we present one of the most comprehensive high-density, single nucleotide polymorphism (SNP) maps of mice constructed to date. This map consists of 10,350 SNPs genotyped in 62 strains of inbred mice. We demonstrate the utility of these data via a novel integrative genomics approach to mapping susceptibility loci for complex traits. By integrating in silico quantitative trait locus (QTL) mapping with progressive QTL mapping strategies in segregating mouse populations that leverage large-scale mapping of the genetic determinants of gene expression traits, we not only facilitate identification of candidate quantitative trait genes, but also protect against spurious associations that can arise in genetic association studies due to allelic association among unlinked markers. Application of this approach to our high-density SNP map and two previously described F2 crosses between strains C57BL/6J (B6) and DBA/2J and between B6 ApoE(-/-) and C3H/HeJ ApoE(-/-) results in the identification of Insig2 as a strong candidate susceptibility gene for total plasma cholesterol levels.


Subject(s)
Cholesterol/blood , Chromosome Mapping/methods , Genetic Predisposition to Disease , Hypercholesterolemia/genetics , Membrane Proteins/genetics , Animals , Genetic Markers , Hypercholesterolemia/veterinary , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...