Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37917526

ABSTRACT

The concept of augmented reality (AR) assistants has captured the human imagination for decades, becoming a staple of modern science fiction. To pursue this goal, it is necessary to develop artificial intelligence (AI)-based methods that simultaneously perceive the 3D environment, reason about physical tasks, and model the performer, all in real-time. Within this framework, a wide variety of sensors are needed to generate data across different modalities, such as audio, video, depth, speech, and time-of-flight. The required sensors are typically part of the AR headset, providing performer sensing and interaction through visual, audio, and haptic feedback. AI assistants not only record the performer as they perform activities, but also require machine learning (ML) models to understand and assist the performer as they interact with the physical world. Therefore, developing such assistants is a challenging task. We propose ARGUS, a visual analytics system to support the development of intelligent AR assistants. Our system was designed as part of a multi-year-long collaboration between visualization researchers and ML and AR experts. This co-design process has led to advances in the visualization of ML in AR. Our system allows for online visualization of object, action, and step detection as well as offline analysis of previously recorded AR sessions. It visualizes not only the multimodal sensor data streams but also the output of the ML models. This allows developers to gain insights into the performer activities as well as the ML models, helping them troubleshoot, improve, and fine-tune the components of the AR assistant.

2.
IEEE Trans Vis Comput Graph ; 27(2): 390-400, 2021 02.
Article in English | MEDLINE | ID: mdl-33048694

ABSTRACT

In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, they are difficult for developers to debug. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem. In this paper, we present the Pipeline Profiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be combined with common data science tools to enable a rich set of analyses of the ML pipelines, providing users a better understanding of the algorithms that generated them as well as insights into how they can be improved. We demonstrate the utility of our tool through use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.

SELECTION OF CITATIONS
SEARCH DETAIL
...