Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 95738-95757, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37556063

ABSTRACT

Multiple studies have focused on the effect of long-term weathering processes on oils after spill events, without considering the chemical compositional changes occurring shortly after the release of oil into the environment. Therefore, the present study provides a broad chemical characterization for understanding of the changes occurring in the chemical compositions of intermediate (°API = 27.0) and heavy (°API = 20.9) oils from the Sergipe-Alagoas basin submitted to two simulated situations, one under marine conditions and the other in a riverine environment. Samples of the oils were collected during the first 72 h of contact with the simulated environments, followed by evaluation of their chemical compositions. SARA fractionation was used to isolate the resins, which were characterized at the molecular level by UHRMS. The evaporation process was highlighted, with the GC-FID chromatographic profiles showing the disappearance of compounds from n-C10 until n-C16, as well as changes in the weathering indexes and pristane + n-C17/phytane + n-C18 ratios for the crude oils submitted to the riverine conditions. Analysis of the resins fraction showed that basic polar compounds underwent little or no alterations during the early stages of weathering. The marine environment was shown to be much less oxidative than the riverine environment. For both environments, a feature highlighted was an increase of acidic oxygenated compounds with the increase of weathering, especially for the crude oil with °API = 27.0.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Petroleum/analysis , Oils/chemistry , Chromatography, Gas , Weather , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis
2.
Anal Chim Acta ; 1160: 338425, 2021 May 22.
Article in English | MEDLINE | ID: mdl-33894963

ABSTRACT

In this study, we describe a proof-of-concept investigation of the potential and limitations of employing channel occlusion for sample preparation in untargeted analysis in petroleomics. A middle petroleum distillate composed of fatty acid methyl esters (FAME) and a complex mixture of linear, branched, and cyclic hydrocarbons were selected as the model samples for this investigation. A microfluidic device was engineered to overcome the limitations of channel occlusion, resulting in a quick and robust method for sample preparation. The 3D-printed device using fused deposition modelling (FDM) allowed the combination of a 13-h multi-step sample handling protocol into a 2-min single-step procedure, which is also automation-friendly. Such developments were also evaluated using the analytical eco-scale to guide the development of a green analytical method. The relative standard deviation decreased 2-fold with method miniaturization. The efficiency of n-alkane removal was extended from tridecane (n-C13) to heptadecane (n-C17), compared to original method (n-C16 to n-C17). The analytical performance of the method was investigated for untargeted analysis. The tool used to probe the intra- and inter-class variance was multi-way principal component analysis (MPCA). MPCA modelling revealed that both methods generated equivalent chemical information, highlighting the benefits of reliable and reproducible sample preparation methods, especially for untargeted analysis. Such awareness is critical to avoid the generation of misleading results in fields that heavily rely on untargeted analysis and fingerprinting, such as petroleomics.

SELECTION OF CITATIONS
SEARCH DETAIL