Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Front Oncol ; 13: 1145667, 2023.
Article in English | MEDLINE | ID: mdl-37274275

ABSTRACT

Introduction: Despite the recent approval of several therapies in the adjuvant setting of melanoma, tumor relapse still occurs in a significant number of completely resected stage III-IV patients. In this context, the use of cancer vaccines is still relevant and may increase the response to immune checkpoint inhibitors. We previously demonstrated safety, immunogenicity and preliminary evidence of clinical efficacy in stage III/IV resected melanoma patients subjected to a combination therapy based on peptide vaccination together with intermittent low-dose interferon-α2b, with or without dacarbazine preconditioning (https://www.clinicaltrialsregister.eu/ctr-search/search, identifier: 2008-008211-26). In this setting, we then focused on pre-treatment patient immune status to highlight possible factors associated with clinical outcome. Methods: Multiparametric flow cytometry was used to identify baseline immune profiles in patients' peripheral blood mononuclear cells and correlation with the patient clinical outcome. Receiver operating characteristic curve, Kaplan-Meier survival and principal component analyses were used to evaluate the predictive power of the identified markers. Results: We identified 12 different circulating T and NK cell subsets with significant (p ≤ 0.05) differential baseline levels in patients who later relapsed with respect to patients who remained free of disease. All 12 parameters showed a good prognostic accuracy (AUC>0.7, p ≤ 0.05) and 11 of them significantly predicted the relapse-free survival. Remarkably, 3 classifiers also predicted the overall survival. Focusing on immune cell subsets that can be analyzed through simple surface staining, three subsets were identified, namely regulatory T cells, CD56dimCD16- NK cells and central memory γδ T cells. Each subset showed an AUC>0.8 and principal component analysis significantly grouped relapsing and non-relapsing patients (p=0.034). These three subsets were used to calculate a combination score that was able to perfectly distinguish relapsing and non-relapsing patients (AUC=1; p=0). Noticeably, patients with a combined score ≥2 demonstrated a strong advantage in both relapse-free (p=0.002) and overall (p=0.011) survival as compared to patients with a score <2. Discussion: Predictive markers may be used to guide patient selection for personalized therapies and/or improve follow-up strategies. This study provides preliminary evidence on the identification of peripheral blood immune biomarkers potentially capable of predicting the clinical response to combined vaccine-based adjuvant therapies in melanoma.

2.
Cancers (Basel) ; 14(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36358770

ABSTRACT

Chimeric antigen receptor T cell therapies are revolutionizing the clinical practice of hematological tumors, whereas minimal progresses have been achieved in the solid tumor arena. Multiple reasons have been ascribed to this slower pace: The higher heterogeneity, the hurdles of defining reliable tumor antigens to target, and the broad repertoire of immune escape strategies developed by solid tumors are considered among the major ones. Currently, several CAR therapies are being investigated in preclinical and early clinical trials against solid tumors differing in the type of construct, the cells that are engineered, and the additional signals included with the CAR constructs to overcome solid tumor barriers. Additionally, novel approaches in development aim at overcoming some of the limitations that emerged with the approved therapies, such as large-scale manufacturing, duration of manufacturing, and logistical issues. In this review, we analyze the advantages and challenges of the different approaches under development, balancing the scientific evidences supporting specific choices with the manufacturing and regulatory issues that are essential for their further clinical development.

4.
Cytokine Growth Factor Rev ; 63: 23-33, 2022 02.
Article in English | MEDLINE | ID: mdl-34955389

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disruptive global consequences in terms of mortality and social and economic crises, have taught lessons that may help define strategies to better face future pandemics. Innate and intrinsic immunity form the front-line natural antiviral defense. They involve both tissue-resident and circulating cells, which can produce anti-viral molecules shortly after viral infection. Prototypes of these factors are type I interferons (IFN), antiviral cytokines with a long record of clinical use. During the last two years, there has been an impressive progress in understanding the mechanisms of both SARS-CoV-2 infection and the cellular and soluble antiviral responses occurring early after viral exposure. However, this information was not sufficiently translated into therapeutic approaches. Insufficient type I IFN activity probably accounts for disease progression in many patients. This results from both the multiple interfering mechanisms developed by SARS-CoV-2 to decrease type I IFN response and various pre-existing human deficits of type I IFN activity, inherited or auto-immune. Emerging data suggest that IFN-I-mediated boosting of patients' immunity, achieved directly through the exogenous administration of IFN-ß early post viral infection, or indirectly following inoculation of heterologous vaccines (e.g., Bacillus Calmette Guerin), might play a role against SARS-CoV-2. We review how recent insights on the viral and human determinants of critical COVID-19 pneumonia can foster clinical studies of IFN therapy. We also discuss how early therapeutic use of IFN-ß and prophylactic campaigns with live attenuated vaccines might prevent a first wave of new pandemic viruses.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Pandemics/prevention & control , SARS-CoV-2
5.
Trials ; 22(1): 584, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479601

ABSTRACT

OBJECTIVES: The primary objective of the study is to demonstrate the efficacy of low-dose IFN-ß in reducing the risk of SARS-CoV-2 recently infected elderly patients to progress towards severe COVID-19 versus control group within 28 days. Secondary objectives are: 1) To assess the reduction in Intensive Care Unit (ICU) admission in patients treated with IFN-ß versus control group within 28 days of randomization 2) To assess the reduction in number of deaths in IFN- ß compared to control group (day 28) 3) To evaluate the increase in proportion of participants returning to negative SARS-CoV-2 RT-PCR in IFN-ß -treated versus control group at Day 14 and Day 28 4) To assess the increase in SARS-CoV-2-specific binding antibody titers in IFN-ß compared to control group (day 28) 5) To assess the safety of IFN-ß -treated patients versus control group TRIAL DESIGN: Randomized, Open-Label, Controlled, Superiority Phase II Study. Patients, who satisfy all inclusion criteria and no exclusion criteria, will be randomly assigned to one of the two treatment groups in a ratio 2:1 (IFN-treated versus control patients). Randomization will be stratified by gender. Stratified randomization will balance the presence of male and female in both study arms. PARTICIPANTS: Male and female adults aged 65 years or older with newly diagnosed SARS-CoV-2 infection and mild COVID-19 symptoms are eligible for the study. The trial is being conducted in Rome. Participants will be either hospitalized or home isolated. A group of physicians belonging to the Special Unit for Regional Continued Care (USCAR), specifically trained for the study and under the supervision of the National Institute for Infectious Diseases "Lazzaro Spallanzani", will be responsible for the screening, enrolment, treatment and clinical monitoring of patients, thus acting as a bridge between clinical centers and territorial health management. Inclusion criteria are as follows: ≥ 65 years of age at time of enrolment; Laboratory-confirmed SARS-CoV-2 infection as determined by PCR, in any specimen < 72 hours prior to randomization; Subject (or legally authorized representative) provides written informed consent prior to initiation of any study procedures; Understands and agrees to comply with planned study procedures; Agrees to the collection of nasopharyngeal swabs and venous blood samples per protocol; Being symptomatic for less than 7 days before starting therapy; NEWS2 score ≤2. Exclusion criteria are as follows: Hospitalized patients with illness of any duration, and at least one of the following: Clinical assessment (evidence of rales/crackles on exam) and SpO2 ≤ 94% on room air at rest or after walking test, OR Acute respiratory failure requiring mechanical ventilation and/or supplemental oxygen; Patients currently using IFN-ß (e.g., multiple sclerosis patients); Patients undergoing chemotherapy or other immunosuppressive treatments; Patients with chronic kidney diseases; Known allergy or hypersensitivity to IFN (including asthma); Any autoimmune disease (resulting from patient anamnesis); Patients with signs of dementia or neurocognitive disorders; Patients with current severe depression and/or suicidal ideations; Being concurrently involved in another clinical trial; HIV infection (based on the anamnesis); Use of any antiretroviral medication; Impaired renal function (eGFR calculated by CKD-EPI Creatinine equation < 30 ml/min); Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition); Any physical or psychological impediment in a patient that could let the investigator to suspect his/her poor compliance; Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: Control arm: No specific antiviral treatment besides standard of care. Treatment arm: 11µg (3MIU) of IFN-ß1a will be injected subcutaneously at day 1, 3, 7, and 10 in addition to standard of care. The drug solution, contained in a pre-filled cartridge, will be injected by means of the RebiSmart® electronic injection device. Interferon ß1a (Rebif®, Merck KGaA, Darmstadt, Germany) is a disease-modifying drug used to treat relapsing forms of multiple sclerosis (MS). The dose selected for this study is expected to exploit the antiviral and immunomodulatory properties of the cytokine without causing relevant toxicity or inducing refractoriness phenomena sometimes observed after high-dose and/or chronic IFNß treatments. MAIN OUTCOMES: Primary endpoint of the study is the proportion of patients experiencing a disease progression, during at least 5 days, according to the National Early Warning Score (NEWS2). The NEWS2 score is a standardized approach aimed at promptly detecting signs of clinical deterioration in acutely ill patients and establishing the potential need for higher level of care. It is based on the evaluation of vital signs, including respiratory rate, oxygen saturation, temperature, blood pressure, pulse/heart rate, AVPU response. The resulting observations, compared to a normal range, are combined in a single composite "alarm" score. Any other clinical sign clearly indicating a disease worsening will be considered as disease progression. RANDOMIZATION: Sixty patients will be randomized 2:1 to receive IFN-ß1a plus the standard of care or the standard of care only. Eligible patients will be randomized (no later than 36 h after enrolment) by means of a computerized central randomization system. All patients will receive a unique patient identification number at enrolling visit when signing the informed consent and before any study procedure is performed. This number remains constant throughout the entire study. The randomization of patients will be closed when 60 patients have been enrolled. The randomization will be stratified by sex; for each stratum a sequence of treatments randomly permuted in blocks of variable length (3 or 6) will be generated. BLINDING (MASKING): This is an open-label study. After the randomization, patients will be notified whether they will be in the experimental arm or in the control arm. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The study plans to enrol 60 patients: 40 in the IFN-ß1a arm, 20 in the control arm, according to a 2:1 - treated: untreated ratio. TRIAL STATUS: Protocol Version: 3.0 Version Date: 18/03/2021 The study is open for recruitment since 16/04/2021.Recruitment is expected to l be completed before 15/08/2021. TRIAL REGISTRATION: EudraCT N°: 2020-003872-42, registration date: 19/10/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol."


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 , HIV Infections , Interferon-beta/therapeutic use , Aged , Clinical Trials, Phase II as Topic , Female , Humans , Male , Randomized Controlled Trials as Topic , Treatment Outcome
6.
Cytokine Growth Factor Rev ; 54: 43-50, 2020 08.
Article in English | MEDLINE | ID: mdl-32665127

ABSTRACT

Coronavirus disease 2019 (COVID-19) first emerged in late 2019 in China. At the time of writing, its causative agent SARS-CoV-2 has spread worldwide infecting over 9 million individuals and causing more than 460,000 deaths. In the absence of vaccines, we are facing the dramatic challenge of controlling COVID-19 pandemic. Among currently available drugs, type I Interferons (IFN-I) - mainly IFN-α and ß -represent ideal candidates given their direct and immune-mediated antiviral effects and the long record of clinical use. However, the best modalities of using these cytokines in SARS-CoV-2 infected patients is a matter of debate. Here, we discuss how we can exploit the current knowledge on IFN-I system to tailor the most promising dosing, timing and route of administration of IFN-I to the disease stage, with the final aim of making these cytokines a valuable therapeutic strategy in today's fight against COVID-19 pandemic.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Interferon-alpha/therapeutic use , Interferon-beta/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Humans , Immunotherapy/methods , SARS-CoV-2 , Secondary Prevention/methods
7.
Front Oncol ; 10: 202, 2020.
Article in English | MEDLINE | ID: mdl-32211314

ABSTRACT

Clinical studies based on novel rationales and mechanisms of action of chemotherapy agents and cytokines can contribute to the development of new concepts and strategies of antitumor combination therapies. In previous studies, we investigated the paradoxical immunostimulating effects of some chemotherapeutics and the immunoadjuvant activity of interferon alpha (IFN-α) in preclinical and clinical models, thus unraveling novel rationales and mechanisms of action of chemotherapy agents and cytokines for cancer immunotherapy. Here, we carried out a randomized, phase II clinical trial, in which we analyzed the relapse-free (RFS) and overall survival (OS) of 34 completely resected stage III-IV melanoma patients, treated with peptide-based vaccination (Melan-A/MART-1 and NY-ESO-1) in combination with IFN-α2b, with (arm 2) or without (arm 1) dacarbazine preconditioning. All patients were included in the intention-to-treat analysis. At a median follow-up of 4.5 years (interquartile range, 15.4-81.0 months), the rates of RFS were 52.9 and 35.3% in arms 1 and 2, respectively. The 4.5-year OS rates were 68.8% in arm 1 and 62.7% in arm 2. No significant differences were observed between the two arms for both RFS and OS. Interestingly, the RFS and OS curves remained stable starting from 18 and 42 months, respectively. Grade 3 adverse events occurred in 5.9% of patients, whereas grade 4 events were not observed. Both treatments induced a significant expansion of vaccine-specific CD8+ T cells, with no correlation with the clinical outcome. However, treatment-induced increase of polyfunctionality and of interleukin 2 production by Melan-A-specific CD8+ T cells and expansion/activation of natural killer cells correlated with RFS, being observed only in nonrelapsing patients. Despite the recent availability of different therapeutic options, low-cost, low-toxic therapies with long-lasting clinical effects are still needed in patients with high-risk resected stage III/IV melanoma. The combination of peptide vaccination with IFN-α2b showed a minimal toxicity profile and resulted in encouraging RFS and OS rates, justifying further evaluation in clinical trials, which may include the use of checkpoint inhibitors to further expand the antitumor immune response and the clinical outcome. Clinical Trial Registration: https://www.clinicaltrialsregister.eu/ctr-search/search, identifier: 2008-008211-26.

8.
Cancers (Basel) ; 11(12)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817234

ABSTRACT

The first report on the antitumor effects of interferon α/ß (IFN-I) in mice was published 50 years ago. IFN-α were the first immunotherapeutic drugs approved by the FDA for clinical use in cancer. However, their clinical use occurred at a time when most of their mechanisms of action were still unknown. These cytokines were being used as either conventional cytostatic drugs or non-specific biological response modifiers. Specific biological activities subsequently ascribed to IFN-I were poorly considered for their clinical use. Notably, a lot of the data in humans and mice underlines the importance of endogenous IFN-I, produced by both immune and tumor cells, in the control of tumor growth and in the response to antitumor therapies. While many oncologists consider IFN-I as "dead drugs", recent studies reveal new mechanisms of action with potential implications in cancer control and immunotherapy response or resistance, suggesting novel rationales for their usage in target and personalized anti-cancer treatments. In this Perspectives Article, we focus on the following aspects: (1) the added value of IFN-I for enhancing the antitumor impact of standard anticancer treatments (chemotherapy and radiotherapy) and new therapeutic approaches, such as check point inhibitors and epigenetic drugs; (2) the role of IFN-I in the control of cancer stem cells growth and its possible implications for the development of novel antitumor therapies; and (3) the role of IFN-I in the development of cancer vaccines and the intriguing therapeutic possibilities offered by in situ delivery of ex vivo IFN-stimulated dendritic cells.

9.
Front Immunol ; 10: 2303, 2019.
Article in English | MEDLINE | ID: mdl-31611878

ABSTRACT

For more than 25 years, dendritic cell (DC) based vaccination has flashily held promises to represent a therapeutic approach for cancer treatment. While the vast majority of studies has focused on the use of antigen loaded DC, the intratumoral delivery of unloaded DC aiming at in situ vaccination has gained much less attention. Such approach grounds on the ability of inoculated DC to internalize and process antigens directly released by tumor (usually in combination with cell-death-inducing agents) to activate broad patient-specific antitumor T cell response. In this review, we highlight the recent studies in both solid and hematological tumors showing promising clinical results and discuss the main pitfalls and advantages of this approach for endogenous cancer vaccination. Lastly, we discuss how in situ vaccination by DC inoculation may fit with current immunotherapy approaches to expand and prolong patient response.


Subject(s)
Dendritic Cells/immunology , Animals , Antigen Presentation/immunology , Cancer Vaccines/immunology , Humans , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Vaccination/methods
10.
Cancer Immunol Immunother ; 68(9): 1479-1492, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31463653

ABSTRACT

RIG-I is a cytosolic RNA sensor that recognizes short 5' triphosphate RNA, commonly generated during virus infection. Upon activation, RIG-I initiates antiviral immunity, and in some circumstances, induces cell death. Because of this dual capacity, RIG-I has emerged as a promising target for cancer immunotherapy. Previously, a sequence-optimized RIG-I agonist (termed M8) was generated and shown to stimulate a robust immune response capable of blocking viral infection and to function as an adjuvant in vaccination strategies. Here, we investigated the potential of M8 as an anti-cancer agent by analyzing its ability to induce cell death and activate the immune response. In multiple cancer cell lines, M8 treatment strongly activated caspase 3-dependent apoptosis, that relied on an intrinsic NOXA and PUMA-driven pathway that was dependent on IFN-I signaling. Additionally, cell death induced by M8 was characterized by the expression of markers of immunogenic cell death-related damage-associated molecular patterns (ICD-DAMP)-calreticulin, HMGB1 and ATP-and high levels of ICD-related cytokines CXCL10, IFNß, CCL2 and CXCL1. Moreover, M8 increased the levels of HLA-ABC expression on the tumor cell surface, as well as up-regulation of genes involved in antigen processing and presentation. M8 induction of the RIG-I pathway in cancer cells favored dendritic cell phagocytosis and induction of co-stimulatory molecules CD80 and CD86, together with increased expression of IL12 and CXCL10. Altogether, these results highlight the potential of M8 in cancer immunotherapy, with the capacity to induce ICD-DAMP on tumor cells and activate immunostimulatory signals that synergize with current therapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Dendritic Cells/immunology , Melanoma/drug therapy , Nelfinavir/analogs & derivatives , Alarmins/immunology , Antigen Presentation/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Calreticulin/metabolism , Caspase 3/metabolism , Cell Differentiation , Cell Line, Tumor , DEAD Box Protein 58/antagonists & inhibitors , HMGB1 Protein/metabolism , Humans , Immunization , Interferons/metabolism , Molecular Targeted Therapy , Nelfinavir/pharmacology , Nelfinavir/therapeutic use , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Immunologic , Signal Transduction
11.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31413127

ABSTRACT

The presence of T cell reservoirs in which human immunodeficiency virus (HIV) establishes latency by integrating into the host genome represents a major obstacle to an HIV cure and has prompted the development of strategies aimed at the eradication of HIV from latently infected cells. The "shock-and-kill" strategy is one of the most pursued approaches to the elimination of viral reservoirs. Although several latency-reversing agents (LRAs) have shown promising reactivation activity, they have failed to eliminate the cellular reservoir. In this study, we evaluated a novel immune system-mediated approach to clearing the HIV reservoir, based on a combination of innate immune stimulation and epigenetic reprogramming. The combination of the STING agonist cGAMP (cyclic GMP-AMP) and the FDA-approved histone deacetylase inhibitor resminostat resulted in a significant increase in HIV proviral reactivation and specific apoptosis in HIV-infected cells in vitro Reductions in the proportion of HIV-harboring cells and the total amount of HIV DNA were also observed in CD4+ central memory T (TCM) cells, a primary cell model of latency, where resminostat alone or together with cGAMP induced high levels of selective cell death. Finally, high levels of cell-associated HIV RNA were detected ex vivo in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells from individuals on suppressive antiretroviral therapy (ART). Although synergism was not detected in PBMCs with the combination, viral RNA expression was significantly increased in CD4+ T cells. Collectively, these results represent a promising step toward HIV eradication by demonstrating the potential of innate immune activation and epigenetic modulation for reducing the viral reservoir and inducing specific death of HIV-infected cells.IMPORTANCE One of the challenges associated with HIV-1 infection is that despite antiretroviral therapies that reduce HIV-1 loads to undetectable levels, proviral DNA remains dormant in a subpopulation of T lymphocytes. Numerous strategies to clear residual virus by reactivating latent virus and eliminating the reservoir of HIV-1 (so-called "shock-and-kill" strategies) have been proposed. In the present study, we use a combination of small molecules that activate the cGAS-STING antiviral innate immune response (the di-cyclic nucleotide cGAMP) and epigenetic modulators (histone deacetylase inhibitors) that induce reactivation and HIV-infected T cell killing in cell lines, primary T lymphocytes, and patient samples. These studies represent a novel strategy for HIV eradication by reducing the viral reservoir and inducing specific death of HIV-infected cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Epigenesis, Genetic , HIV Infections/immunology , HIV-1/immunology , Immunity, Innate/immunology , Virus Activation/immunology , Virus Latency/immunology , Gene Expression Regulation, Viral , HIV Infections/genetics , HIV Infections/virology , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Sulfonamides/pharmacology , Virus Replication
12.
Clin Cancer Res ; 25(17): 5231-5241, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31171545

ABSTRACT

PURPOSE: This study was aimed at evaluating the feasibility, safety, immunologic and clinical responses in patients with follicular lymphoma treated with monocyte-derived dendritic cells generated in the presence of IFNα and GM-CSF (IFN-DC) in combination with low doses of rituximab. PATIENTS AND METHODS: Firstly, we analyzed in vitro and in vivo the immunologic properties of IFN-DC against follicular lymphoma. Thus, we performed a phase I trial in 8 patients with refractory and relapsed follicular lymphoma based on sequential intranodal injections of low-dose of rituximab and unloaded IFN-DC and report the safety, clinical, and immunologic results of the enrolled patients. RESULTS: Preclinical studies indicated that IFN-DC can synergize with rituximab leading to increased cytotoxicity and T-cell tumor infiltration. The clinical evaluation showed that the combined treatment was totally safe. The overall response rate was 50%, PET-negative complete response rate 37%, and remission is still ongoing in 2/4 of responding patients (median follow-up 26 months, range 11-47). Notably, following the combined therapy all patients showed induction/enhancement of T-cell responses by CD107 degranulation or IFNγ ELISPOT assay against patient-specific tumor IGHV sequences. CONCLUSIONS: These results represent the proof-of-principle on the effectiveness of unloaded IFN-DC in inducing durable clinical responses and promoting induction of tumor-specific peripheral T cells, thus suggesting the occurrence of an effective endogenous antitumor vaccination. The overall findings indicate that some unique properties of IFN-DC can be successfully exploited to induce/enhance antitumor responses, thus representing a valuable antitumor strategy for novel and more effective combination therapies in patients with cancer.


Subject(s)
Dendritic Cells/transplantation , Immunotherapy, Adoptive/methods , Lymphoma, Follicular/therapy , Neoplasm Recurrence, Local/therapy , Rituximab/administration & dosage , Adult , Aged , Animals , Antineoplastic Agents, Immunological/administration & dosage , Combined Modality Therapy , Dendritic Cells/drug effects , Dendritic Cells/immunology , Drug Resistance, Neoplasm , Female , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Injections, Intralymphatic , Interferon-alpha/pharmacology , Lymphoma, Follicular/immunology , Lymphoma, Follicular/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Remission Induction , Salvage Therapy , Xenograft Model Antitumor Assays
13.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31092575

ABSTRACT

Oncolytic virotherapy represents a promising experimental anticancer strategy, based on the use of genetically modified viruses to selectively infect and kill cancer cells. Vesicular stomatitis virus (VSV) is a prototypic oncolytic virus (OV) that induces cancer cell death through activation of the apoptotic pathway, although intrinsic resistance to oncolysis is found in some cell lines and many primary tumors, as a consequence of residual innate immunity to the virus. In the effort to improve OV therapeutic efficacy, we previously demonstrated that different agents, including histone deacetylase inhibitors (HDIs), functioned as reversible chemical switches to dampen the innate antiviral response and improve the susceptibility of resistant cancer cells to VSV infection. In the present study, we demonstrated that the NAD+-dependent histone deacetylase SIRT1 (silent mating type information regulation 2 homolog 1) plays a key role in the permissivity of prostate cancer PC-3 cells to VSVΔM51 replication and oncolysis. HDI-mediated enhancement of VSVΔM51 infection and cancer cell killing directly correlated with a decrease of SIRT1 expression. Furthermore, pharmacological inhibition as well as silencing of SIRT1 by small interfering RNA (siRNA) was sufficient to sensitize PC-3 cells to VSVΔM51 infection, resulting in augmentation of virus replication and spread. Mechanistically, HDIs such as suberoylanilide hydroxamic acid (SAHA; Vorinostat) and resminostat upregulated the microRNA miR-34a that regulated the level of SIRT1. Taken together, our findings identify SIRT1 as a viral restriction factor that limits VSVΔM51 infection and oncolysis in prostate cancer cells.IMPORTANCE The use of nonpathogenic viruses to target and kill cancer cells is a promising strategy in cancer therapy. However, many types of human cancer are resistant to the oncolytic (cancer-killing) effects of virotherapy. In this study, we identify a host cellular protein, SIRT1, that contributes to the sensitivity of prostate cancer cells to infection by a prototypical oncolytic virus. Knockout of SIRT1 activity increases the sensitivity of prostate cancer cells to virus-mediated killing. At the molecular level, SIRT1 is controlled by a small microRNA termed miR-34a. Altogether, SIRT1 and/or miR-34a levels may serve as predictors of response to oncolytic-virus therapy.


Subject(s)
Host Microbial Interactions , Immunity, Innate , Oncolytic Viruses/growth & development , Sirtuin 1/metabolism , Vesiculovirus/growth & development , Virus Replication , Humans , Male , Oncolytic Viruses/immunology , PC-3 Cells , Vesiculovirus/immunology
14.
Cancer Immunol Res ; 6(6): 658-670, 2018 06.
Article in English | MEDLINE | ID: mdl-29622580

ABSTRACT

Type I interferon (IFN-I) is a class of antiviral immunomodulatory cytokines involved in many stages of tumor initiation and progression. IFN-I acts directly on tumor cells to inhibit cell growth and indirectly by activating immune cells to mount antitumor responses. To understand the role of endogenous IFN-I in spontaneous, oncogene-driven carcinogenesis, we characterized tumors arising in HER2/neu transgenic (neuT) mice carrying a nonfunctional mutation in the IFNI receptor (IFNAR1). Such mice are unresponsive to this family of cytokines. Compared with parental neu+/- mice (neuT mice), IFNAR1-/- neu+/- mice (IFNAR-neuT mice) showed earlier onset and increased tumor multiplicity with marked vascularization. IFNAR-neuT tumors exhibited deregulation of genes having adverse prognostic value in breast cancer patients, including the breast cancer stem cell (BCSC) marker aldehyde dehydrogenase-1A1 (ALDH1A1). An increased number of BCSCs were observed in IFNAR-neuT tumors, as assessed by ALDH1A1 enzymatic activity, clonogenic assay, and tumorigenic capacity. In vitro exposure of neuT+ mammospheres and cell lines to antibodies to IFN-I resulted in increased frequency of ALDH+ cells, suggesting that IFN-I controls stemness in tumor cells. Altogether, these results reveal a role of IFN-I in neuT-driven spontaneous carcinogenesis through intrinsic control of BCSCs. Cancer Immunol Res; 6(6); 658-70. ©2018 AACR.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Interferon Type I/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Receptor, ErbB-2/metabolism , Signal Transduction , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Female , Gene Expression Profiling , Humans , Immunophenotyping , Mice, Knockout , Mice, Transgenic , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Receptor, ErbB-2/genetics , Tumor Stem Cell Assay
15.
PLoS One ; 13(1): e0189477, 2018.
Article in English | MEDLINE | ID: mdl-29320502

ABSTRACT

Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.


Subject(s)
Dendritic Cells/immunology , Interferon-alpha/immunology , Latent Tuberculosis/pathology , Adult , Antigens, CD/immunology , Down-Regulation , Female , Humans , Latent Tuberculosis/immunology , Male , Middle Aged , Mycobacterium tuberculosis/immunology
16.
Clin Cancer Res ; 23(13): 3352-3364, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28073842

ABSTRACT

Purpose: Despite the vast number of clinical trials conducted so far, dendritic cell (DC)-based cancer vaccines have mostly shown unsatisfactory results. Factors and manufacturing procedures essential for these therapeutics to induce effective antitumor immune responses have yet to be fully characterized. We here aimed to identify DC markers correlating with clinical and immunologic response in a prostate carcinoma vaccination regimen.Experimental Design: We performed an extensive characterization of DCs used to vaccinate 18 patients with prostate carcinoma enrolled in a pilot trial of T-cell receptor gamma alternate reading frame protein (TARP) peptide vaccination (NCT00908258). Peptide-pulsed DC preparations (114) manufactured were analyzed by gene expression profiling, cell surface marker expression and cytokine release secretion, and correlated with clinical and immunologic responses.Results: DCs showing lower expression of tolerogenic gene signature induced strong antigen-specific immune response and slowing in PSA velocity, a surrogate for clinical response. These DCs were also characterized by lower surface expression of CD14, secretion of IL10 and MCP-1, and greater secretion of MDC. When combined, these four factors were able to remarkably discriminate DCs that were sufficiently potent to induce strong immunologic response.Conclusions: DC factors essential for the activation of immune responses associated with TARP vaccination in prostate cancer patients were identified. This study highlights the importance of in-depth characterization of DC vaccines and other cellular therapies, to understand the critical factors that hinder potency and potential efficacy in patients. Clin Cancer Res; 23(13); 3352-64. ©2017 AACR.


Subject(s)
Cancer Vaccines/administration & dosage , Dendritic Cells/immunology , Nuclear Proteins/immunology , Prostatic Neoplasms/therapy , Adolescent , Adult , Aged , Cancer Vaccines/immunology , Cell- and Tissue-Based Therapy/methods , Chemokine CCL2/genetics , Gene Expression Regulation, Neoplastic , Humans , Interleukin-10/genetics , Lipopolysaccharide Receptors/genetics , Male , Middle Aged , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Treatment Outcome
17.
Addict Biol ; 22(4): 911-922, 2017 Jul.
Article in English | MEDLINE | ID: mdl-26870906

ABSTRACT

Childhood maltreatment is associated with increased severity of substance use disorder and frequent relapse to drug use following abstinence. However, the molecular and neurobiological substrates that are engaged during early traumatic events and mediate the greater risk of relapse are poorly understood and knowledge of risk factors is to date extremely limited. In this study, we modeled childhood maltreatment by exposing juvenile mice to a threatening social experience (social stressed, S-S). We showed that S-S experience influenced the propensity to reinstate cocaine-seeking after periods of withdrawal in adulthood. By exploring global gene expression in blood leukocytes we found that this behavioral phenotype was associated with greater blood coagulation. In parallel, impairments in brain microvasculature were observed in S-S mice. Furthermore, treatment with an anticoagulant agent during withdrawal abolished the susceptibility to reinstate cocaine-seeking in S-S mice. These findings provide novel insights into a possible molecular mechanism by which childhood maltreatment heightens the risk for relapse in cocaine-dependent individuals.


Subject(s)
Blood Coagulation/physiology , Brain/blood supply , Cocaine-Related Disorders/etiology , Cocaine/administration & dosage , Social Behavior , Stress, Psychological/complications , Animals , Behavior, Animal , Cocaine-Related Disorders/physiopathology , Disease Models, Animal , Male , Mice , Mice, Inbred DBA , Stress, Psychological/physiopathology
18.
Oncoimmunology ; 5(8): e1197459, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27622067

ABSTRACT

T-cell receptor alternate reading frame protein (TARP) is a 58-residue protein over-expressed in prostate and breast cancer. We investigated TARP peptide vaccination's impact on the rise in PSA (expressed as Slope Log(PSA) or PSA Doubling Time (PSADT)), validated tumor growth measures, and tumor growth rate in men with Stage D0 prostate cancer. HLA-A*0201 positive men were randomized to receive epitope-enhanced (29-37-9V) and wild-type (27-35) TARP peptides administered as a Montanide/GM-CSF peptide emulsion or as an autologous peptide-pulsed dendritic cell vaccine every 3 weeks for a total of five vaccinations with an optional 6th dose of vaccine at 36 weeks based on immune response or PSADT criteria with a booster dose of vaccine for all patients at 48 and 96 weeks. 41 patients enrolled with median on-study duration of 75 weeks at the time of this analysis. Seventy-two percent of patients reaching 24 weeks and 74% reaching 48 weeks had a decreased Slope Log(PSA) compared to their pre-vaccination baseline (p = 0.0012 and p = 0.0004 for comparison of overall changes in Slope Log(PSA), respectively). TARP vaccination also resulted in a 50% decrease in median tumor growth rate (g): pre-vaccine g = 0.0042/day, post-vaccine g = 0.0021/day (p = 0.003). 80% of subjects exhibited new vaccine-induced TARP-specific IFNγ ELISPOT responses but they did not correlate with decreases in Slope Log(PSA). Thus, vaccination with TARP peptides resulted in significant slowing in PSA velocity and reduction in tumor growth rate in a majority of patients with PSA biochemical recurrence.

19.
J Mol Biol ; 428(17): 3429-48, 2016 08 28.
Article in English | MEDLINE | ID: mdl-27130436

ABSTRACT

Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus.


Subject(s)
Dengue Virus/immunology , Dengue Virus/pathogenicity , Host-Pathogen Interactions , Immunity, Innate , Zika Virus/immunology , Zika Virus/pathogenicity , Aedes/virology , Animals , Humans , Oxidative Stress
20.
J Transl Med ; 13: 139, 2015 May 02.
Article in English | MEDLINE | ID: mdl-25933939

ABSTRACT

BACKGROUND: Advanced melanoma patients have an extremely poor long term prognosis and are in strong need of new therapies. The recently developed targeted therapies have resulted in a marked antitumor effect, but most responses are partial and some degree of toxicity remain the major concerns. Dendritic cells play a key role in the activation of the immune system and have been typically used as ex vivo antigen-loaded cell drugs for cancer immunotherapy. Another approach consists in intratumoral injection of unloaded DCs that can exploit the uptake of a wider array of tumor-specific and individual unique antigens. However, intratumoral immunization requires DCs endowed at the same time with properties typically belonging to both immature and mature DCs (i.e. antigen uptake and T cell priming). DCs generated in presence of interferon-alpha (IFN-DCs), due to their features of partially mature DCs, capable of efficiently up-taking, processing and cross-presenting antigens to T cells, could successfully carry out this task. Combining intratumoral immunization with tumor-destructing therapies can induce antigen release in situ, facilitating the injected DCs in triggering an antitumor immune response. METHODS: We tested in a phase I clinical study in advanced melanoma a chemo-immunotherapy approach based on unloaded IFN-DCs injected intratumorally one day after administration of dacarbazine. Primary endpoint of the study was treatment safety and tolerability. Secondary endpoints were immune and clinical responses of patients. RESULTS: Six patients were enrolled, and only three completed the treatment. The chemo-immunotherapy was well tolerated with no major side effects. Three patients showed temporary disease stabilization and two of them showed induction of T cells specific for tyrosinase, NY-ESO-1 and gp100. Of interest, one patient showing a remarkable long-term disease stabilization kept showing presence of tyrosinase specific T cells in PBMC and high infiltration of memory T cells in the tumor lesion at 21 months. CONCLUSION: We tested a chemo-immunotherapeutic approach based on IFN-DCs injected intratumorally one day after DTIC in advanced melanoma. The treatment was well tolerated, and clinical and immunological responses, including development of vitiligo, were observed, therefore warranting additional clinical studies aimed at evaluating efficacy of this approach. TRIAL REGISTRATION: Trial Registration Number not publicly available due to EudraCT regulations: https://www.clinicaltrialsregister.eu/doc/EU_CTR_FAQ.pdf.


Subject(s)
Dacarbazine/chemistry , Dendritic Cells/cytology , Drug Therapy/methods , Immunotherapy/methods , Injections, Intralesional , Interferon-alpha/metabolism , Melanoma/therapy , Adult , Aged , Antigens, Neoplasm/metabolism , Cancer Vaccines/immunology , Combined Modality Therapy/methods , Female , Gene Expression Profiling , Humans , Leukocytes, Mononuclear/cytology , Male , Membrane Proteins/metabolism , Microscopy, Confocal , Middle Aged , Monocytes/metabolism , Monophenol Monooxygenase/metabolism , Vitiligo/chemically induced , gp100 Melanoma Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...