Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 32(1): 124-139, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37990494

ABSTRACT

Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Transduction, Genetic , Lentivirus/genetics , Genetic Therapy/methods , Immunity, Innate , Genetic Vectors/genetics , Antigens, CD34
2.
Carcinogenesis ; 42(12): 1449-1460, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34687205

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is involved in prostate cancer (PCa) metastatic progression, and its plasticity suggests epigenetic implications. Deregulation of DNA methyltransferases (DNMTs) and several microRNAs (miRNAs) plays a relevant role in EMT, but their interplay has not been clarified yet. In this study, we provide evidence that DNMT3A interaction with several miRNAs has a central role in an ex vivo EMT PCa model obtained via exposure of PC3 cells to conditioned media from cancer-associated fibroblasts. The analysis of the alterations of the miRNA profile shows that miR-200 family (miR-200a/200b/429, miR-200c/141), miR-205 and miR-203, known to modulate key EMT factors, are down-regulated and hyper-methylated at their promoters. DNMT3A (mainly isoform a) is recruited onto these miRNA promoters, coupled with the increase of H3K27me3/H3K9me3 and/or the decrease of H3K4me3/H3K36me3. Most interestingly, our results reveal the differential expression of two DNMT3A isoforms (a and b) during ex vivo EMT and a regulatory feedback loop between miR-429 and DNMT3A that can promote and sustain the transition towards a more mesenchymal phenotype. We demonstrate the ability of miR-429 to target DNMT3A 3'UTR and modulate the expression of EMT factors, in particular ZEB1. Survey of the PRAD-TCGA dataset shows that patients expressing an EMT-like signature are indeed characterized by down-regulation of the same miRNAs with a diffused hyper-methylation at miR-200c/141 and miR-200a/200b/429 promoters. Finally, we show that miR-1260a also targets DNMT3A, although it does not seem to be involved in EMT in PCa.


Subject(s)
DNA Methyltransferase 3A/metabolism , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Binding Sites , Chromatin Immunoprecipitation , Computational Biology/methods , DNA Methylation , Disease Susceptibility , Humans , Male , Promoter Regions, Genetic , Prostatic Neoplasms/pathology , Protein Binding , RNA Interference , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
3.
Nat Commun ; 9(1): 5026, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30487570

ABSTRACT

Myoblast fusion (MF) is required for muscle growth and repair, and its alteration contributes to muscle diseases. The mechanisms governing this process are incompletely understood, and no epigenetic regulator has been previously described. Ash1L is an epigenetic activator belonging to the Trithorax group of proteins and is involved in FSHD muscular dystrophy, autism and cancer. Its physiological role in skeletal muscle is unknown. Here we report that Ash1L expression is positively correlated with MF and reduced in Duchenne muscular dystrophy. In vivo, ex vivo and in vitro experiments support a selective and evolutionary conserved requirement for Ash1L in MF. RNA- and ChIP-sequencing indicate that Ash1L is required to counteract Polycomb repressive activity to allow activation of selected myogenesis genes, in particular the key MF gene Cdon. Our results promote Ash1L as an important epigenetic regulator of MF and suggest that its activity could be targeted to improve cell therapy for muscle diseases.


Subject(s)
Cell Adhesion Molecules/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Line , DNA-Binding Proteins , Histone-Lysine N-Methyltransferase/genetics , Mice , Mice, Inbred C57BL , Muscular Dystrophies
4.
Cancer Res ; 76(9): 2626-36, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27197265

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a core process underlying cell movement during embryonic development and morphogenesis. Cancer cells hijack this developmental program to execute a multi-step cascade, leading to tumorigenesis and metastasis. CD133 (PROM1), a marker of cancer stem cells, has been shown to facilitate EMT in various cancers, but the regulatory networks controlling CD133 gene expression and function in cancer remain incompletely delineated. In this study, we show that a ribonucleoprotein complex including the long noncoding RNA MALAT1 and the RNA-binding protein HuR (ELAVL1) binds the CD133 promoter region to regulate its expression. In luminal nonmetastatic MCF-7 breast cancer cells, HuR silencing was sufficient to upregulate N-cadherin (CDH2) and CD133 along with a migratory and mesenchymal-like phenotype. Furthermore, we found that in the basal-like metastatic cell line MDA-MB-231 and primary triple-negative breast cancer tumor cells, the repressor complex was absent from the CD133-regulatory region, but was present in the MCF-7 and primary ER+ tumor cells. The absence of the complex from basal-like cells was attributed to diminished expression of MALAT1, which, when overexpressed, dampened CD133 levels. In conclusion, our findings suggest that the failure of a repressive complex to form or stabilize in breast cancer promotes CD133 upregulation and an EMT-like program, providing new mechanistic insights underlying the control of prometastatic processes. Cancer Res; 76(9); 2626-36. ©2016 AACR.


Subject(s)
Breast Neoplasms/pathology , ELAV-Like Protein 1/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , Animals , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Female , Gene Expression Regulation, Neoplastic/physiology , Heterografts , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Real-Time Polymerase Chain Reaction
5.
Oncotarget ; 7(18): 26551-66, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27034169

ABSTRACT

The Yes-associated protein, YAP, is a transcriptional co-activator, mediating the Epithelial to Mesenchymal Transition program in pancreatic ductal adenocarcinoma (PDAC). With the aim to identify compounds that can specifically modulate YAP functionality in PDAC cell lines, we performed a small scale, drug-based screening experiment using YAP cell localization as the read-out. We identified erlotinib as an inducer of YAP cytoplasmic localization, an inhibitor of the TEA luciferase reporter system and the expression of the bona fide YAP target gene, Connective Tissue Growth Factor CTGF. On the other hand, BIS I, an inhibitor of PKCδ and GSK3ß, caused YAP accumulation into the nucleus. Activation of ß-catenin reporter and interfering experiments show that inhibition of the PKCδ/GSK3ß pathway triggers YAP nuclear accumulation inducing YAP/TEAD transcriptional response. Inhibition of GSK3ß by BIS I reduced the expression levels of SMADs protein and reduced YAP contribution to EMT. Notably, BIS I reduced proliferation, migration and clonogenicity of PDAC cells in vitro, phenocopying YAP genetic down-regulation. As shown by chromatin immunoprecipitation experiments and YAP over-expressing rescue experiments, BIS I reverted YAP-dependent EMT program by modulating the expression of the YAP target genes E-cadherin, vimentin, CTGF and of the newly identified target, CD133. In conclusion, we identified two different molecules, erlotinib and BIS I, modulating YAP functionality although via different mechanisms of action, with the second one specifically inhibiting the YAP-dependent EMT program in PDAC cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/pathology , Epithelial-Mesenchymal Transition/drug effects , Indoles/pharmacology , Maleimides/pharmacology , Pancreatic Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Erlotinib Hydrochloride/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Smad Proteins/biosynthesis , Transcription Factors , YAP-Signaling Proteins
6.
J Pharmacol Exp Ther ; 349(1): 99-106, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24492650

ABSTRACT

The protein kinase Cδ (PKCδ) interacts with and phosphorylates HuR, dictating its functionality. We show here that the genotoxic stimulus induced by doxorubicin triggers PKCδ interaction with HuR and leads to HuR phosphorylation on serines 221 and 318 and cytoplasmic translocation. This series of events is crucial to elicit the death pathway triggered by doxorubicin and is necessary to promote HuR function in post-transcriptional regulation of gene expression, because genetic ablation of PKCδ caused the inability of HuR to bind its target mRNAs, topoisomerase IIα (TOP2A) included. In in vitro select doxorubicin-resistant human breast cancer cell lines upregulating the multidrug resistance marker ABCG2, PKCδ, and HuR proteins were coordinately downregulated together with the doxorubicin target TOP2A protein whose mRNA was HuR-regulated. Therefore, we show here that PKCδ, HuR, and TOP2A constitute a network mediating doxorubicin efficacy in breast cancer cells. The importance of these molecular events in cancer therapy is suggested by their being profoundly suppressed in cells selected for doxorubicin resistance.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , ELAV Proteins/metabolism , Protein Kinase C-delta/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Down-Regulation , ELAV Proteins/genetics , Female , Humans , Phosphorylation , Poly-ADP-Ribose Binding Proteins , Protein Kinase C-delta/genetics , RNA, Small Interfering/genetics
7.
BMC Cell Biol ; 13: 19, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22783988

ABSTRACT

BACKGROUND: MeCP2 (CpG-binding protein 2) is a nuclear multifunctional protein involved in several cellular processes, like large-scale chromatin reorganization and architecture, and transcriptional regulation. In recent years, a non-neuronal role for MeCP2 has emerged in cell growth and proliferation. Mutations in the MeCP2 gene have been reported to determine growth disadvantages in cultured lymphocyte cells, and its functional ablation suppresses cell growth in glial cells and proliferation in mesenchymal stem cells and prostate cancer cells. MeCP2 interacts with lamin B receptor (LBR) and with Heterochromatin Protein 1 (HP1) at the nuclear envelope (NE), suggesting that it could be part of complexes involved in attracting heterochromatin at the nuclear periphery and in mediating gene silencing. The nuclear lamins, major components of the lamina, have a role in maintaining NE integrity, in orchestrating mitosis, in DNA replication and transcription, in regulation of mitosis and apoptosis and in providing anchoring sites for chromatin domains.In this work, we inferred that MeCP2 might have a role in nuclear envelope stability, thereby affecting the proliferation pattern of highly proliferating systems. RESULTS: By performing knock-down (KD) of MeCP2 in normal murine (NIH-3 T3) and in human prostate transformed cells (PC-3 and LNCaP), we observed a strong proliferation decrease and a defect in the cell cycle progression, with accumulation of cells in S/G2M, without triggering a strong apoptotic and senescent phenotype. In these cells, KD of MeCP2 evidenced a considerable decrease of the levels of lamin A, lamin C, lamin B1 and LBR proteins. Moreover, by confocal analysis we confirmed the reduction of lamin A levels, but we also observed an alteration in the shape of the nuclear lamina and an irregular nuclear rim. CONCLUSIONS: Our results that indicate reduced levels of NE components, are consistent with a hypothesis that the deficiency of MeCP2 might cause the lack of a key "bridge" function that links the peripheral heterochromatin to the NE, thereby causing an incorrect assembly of the NE itself, together with a decreased cell proliferation and viability.


Subject(s)
Lamin Type A/metabolism , Lamin Type B/metabolism , Methyl-CpG-Binding Protein 2/antagonists & inhibitors , Animals , Cell Cycle Checkpoints , Cell Line , Cell Nucleus/metabolism , Cell Proliferation , Cell Survival , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , NIH 3T3 Cells , Nuclear Envelope/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Lamin B Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...