Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 29(5): 2115-2124, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29688344

ABSTRACT

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.


Subject(s)
Corpus Striatum/embryology , Corpus Striatum/metabolism , Eye Proteins/metabolism , Neocortex/embryology , Neocortex/metabolism , Neuroglia/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Aborted Fetus/embryology , Aborted Fetus/metabolism , Ependymoglial Cells/metabolism , Gestational Age , Humans , Lateral Ventricles/embryology , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Neuroepithelial Cells/metabolism , Prosencephalon/embryology , Prosencephalon/metabolism , Species Specificity
2.
Nat Neurosci ; 17(12): 1804-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25383901

ABSTRACT

The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.


Subject(s)
Corpus Striatum/embryology , Corpus Striatum/physiology , Fetal Development/physiology , Gene Regulatory Networks/physiology , Action Potentials/physiology , Cell Differentiation/physiology , Cells, Cultured , HEK293 Cells , Humans , Organ Culture Techniques
3.
Nat Commun ; 5: 5611, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25425146

ABSTRACT

Microglia are observed in the early developing forebrain and contribute to the regulation of neurogenesis through still unravelled mechanisms. In the developing cerebral cortex, microglia cluster in the ventricular/subventricular zone (VZ/SVZ), a region containing Cxcl12-expressing basal progenitors (BPs). Here we show that the ablation of BP as well as genetic loss of Cxcl12 affect microglia recruitment into the SVZ. Ectopic Cxcl12 expression or pharmacological blockage of CxcR4 further supports that Cxcl12/CxcR4 signalling is involved in microglial recruitment during cortical development. Furthermore, we found that cell death in the developing forebrain triggers microglial proliferation and that this is mediated by the release of macrophage migration inhibitory factor (MIF). Finally, we show that the depletion of microglia in mice lacking receptor for colony-stimulating factor-1 (Csf-1R) reduces BPs into the cerebral cortex.


Subject(s)
Cerebral Cortex/growth & development , Microglia/cytology , Neural Stem Cells/cytology , Neurogenesis , Animals , Cell Movement , Cell Proliferation , Cells, Cultured , Cerebral Cortex/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Female , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neural Stem Cells/metabolism , Organogenesis , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction
4.
Stem Cell Rev Rep ; 9(4): 461-74, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23625190

ABSTRACT

Here we present the principles and steps of a protocol that we have recently developed for the differentiation of hES/iPS cells into the authentic human striatal projection medium spiny neurons (MSNs) that die in Huntington's Disease (HD). Authenticity is judged by the convergence of multiple features within individual cells. Our procedure lasts 80 days and couples neural induction via BMP/TGF-ß inhibition with exposure to the developmental factors sonic hedgehog (SHH) and dickkopf1 (DKK-1) to drive ventral telencephalic specification, followed by terminal differentiation [1]. Authenticity of the resulting neuronal population is monitored by the appearance of FOXG1(+)/GSX2(+) progenitor cells of the lateral ganglionic eminence (LGE) at day 15-25 of differentiation, followed by appearance of CTIP2-, FOXP1- and FOXP2-positive cells at day 45. These precursor cells then mature into MAP2(+)/GABA(+) neurons with 20 % of them ultimately co-expressing the DARPP-32 and CTIP2 diagnostic markers and carrying electrophysiological properties expected for fully functional MSNs.The protocol is characterized by its replicability in at least three human pluripotent cell lines. Altogether this protocol defines a useful platform for in vitro developmental neurobiology studies, drug screening, and regenerative medicine approaches.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Neostriatum/cytology , Neurons/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Feeder Cells/cytology , Feeder Cells/drug effects , Feeder Cells/metabolism , Fluorescent Antibody Technique , Humans , Mice , Neurons/drug effects , Neurons/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism
5.
Stem Cell Res ; 10(3): 417-427, 2013 May.
Article in English | MEDLINE | ID: mdl-23474892

ABSTRACT

We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Multipotent Stem Cells/cytology , Neural Stem Cells/cytology , Cell Differentiation/drug effects , Cells, Cultured , Culture Media/chemistry , Epidermal Growth Factor/pharmacology , Fibroblast Growth Factor 2/pharmacology , Humans , Intermediate Filament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nestin , Neural Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , SOXB1 Transcription Factors/metabolism , Up-Regulation
6.
Development ; 140(2): 301-12, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23250204

ABSTRACT

Medium-sized spiny neurons (MSNs) are the only neostriatum projection neurons, and their degeneration underlies some of the clinical features of Huntington's disease. Using knowledge of human developmental biology and exposure to key neurodevelopmental molecules, human pluripotent stem (hPS) cells were induced to differentiate into MSNs. In a feeder-free adherent culture, ventral telencephalic specification is induced by BMP/TGFß inhibition and subsequent SHH/DKK1 treatment. The emerging FOXG1(+)/GSX2(+) telencephalic progenitors are then terminally differentiated, resulting in the systematic line-independent generation of FOXP1(+)/FOXP2(+)/CTIP2(+)/calbindin(+)/DARPP-32(+) MSNs. Similar to mature MSNs, these neurons carry dopamine and A2a receptors, elicit a typical firing pattern and show inhibitory postsynaptic currents, as well as dopamine neuromodulation and synaptic integration ability in vivo. When transplanted into the striatum of quinolinic acid-lesioned rats, hPS-derived neurons survive and differentiate into DARPP-32(+) neurons, leading to a restoration of apomorphine-induced rotation behavior. In summary, hPS cells can be efficiently driven to acquire a functional striatal fate using an ontogeny-recapitulating stepwise method that represents a platform for in vitro human developmental neurobiology studies and drug screening approaches.


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Neurons/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Adhesion , Cell Differentiation , Cell Lineage , Cell Survival , Cell Transplantation , Embryonic Stem Cells/cytology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , GABAergic Neurons/metabolism , Humans , Huntington Disease/metabolism , Mice , Oligonucleotide Array Sequence Analysis , Patch-Clamp Techniques , Quinolinic Acid/pharmacology , RNA/metabolism , Rats , Stem Cells/cytology , Time Factors
7.
Neurobiol Dis ; 46(1): 41-51, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22405424

ABSTRACT

Neuronal disorders, like Huntington's disease (HD), are difficult to study, due to limited cell accessibility, late onset manifestations, and low availability of material. The establishment of an in vitro model that recapitulates features of the disease may help understanding the cellular and molecular events that trigger disease manifestations. Here, we describe the generation and characterization of a series of induced pluripotent stem (iPS) cells derived from patients with HD, including two rare homozygous genotypes and one heterozygous genotype. We used lentiviral technology to transfer key genes for inducing reprogramming. To confirm pluripotency and differentiation of iPS cells, we used PCR amplification and immunocytochemistry to measure the expression of marker genes in embryoid bodies and neurons. We also analyzed teratomas that formed in iPS cell-injected mice. We found that the length of the pathological CAG repeat did not increase during reprogramming, after long term growth in vitro, and after differentiation into neurons. In addition, we observed no differences between normal and mutant genotypes in reprogramming, growth rate, caspase activation or neuronal differentiation. However, we observed a significant increase in lysosomal activity in HD-iPS cells compared to control iPS cells, both during self-renewal and in iPS-derived neurons. In conclusion, we have established stable HD-iPS cell lines that can be used for investigating disease mechanisms that underlie HD. The CAG stability and lysosomal activity represent novel observations in HD-iPS cells. In the future, these cells may provide the basis for a powerful platform for drug screening and target identification in HD.


Subject(s)
Cell Culture Techniques/methods , Huntington Disease/genetics , Huntington Disease/metabolism , Lysosomes/genetics , Nerve Tissue Proteins/genetics , Pluripotent Stem Cells/metabolism , Animals , Cell Line , Fibroblasts/cytology , Fibroblasts/physiology , Heterozygote , Homozygote , Humans , Huntingtin Protein , Huntington Disease/pathology , Lysosomes/metabolism , Mice , Mice, SCID , Mutation , Nerve Tissue Proteins/metabolism , Phenotype , Teratoma/genetics , Teratoma/metabolism , Transcriptional Activation/physiology
8.
Neurobiol Dis ; 46(1): 30-40, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22227000

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an excessive expansion of a CAG trinucleotide repeat in the gene encoding the protein huntingtin, resulting in an elongated stretch of glutamines near the N-terminus of the protein. Here we report the derivation of a collection of 11 induced pluripotent stem (iPS) cell lines generated through somatic reprogramming of fibroblasts obtained from the R6/2 transgenic HD mouse line. We show that CAG expansion has no effect on reprogramming efficiency, cell proliferation rate, brain-derived neurotrophic factor level, or neurogenic potential. However, genes involved in the cholesterol biosynthesis pathway, which is altered in HD, are also affected in HD-iPS cell lines. Furthermore, we found a lysosomal gene upregulation and an increase in lysosome number in HD-iPS cell lines. These observations suggest that iPS cells from HD mice replicate some but not all of the molecular phenotypes typically observed in the disease; additionally, they do not manifest increased cell death propensity either under self-renewal or differentiated conditions. More studies will be necessary to transform a revolutionary technology into a powerful platform for drug screening approaches.


Subject(s)
Cell Differentiation/genetics , Huntington Disease/enzymology , Induced Pluripotent Stem Cells/enzymology , Lysosomes/enzymology , Neurons/enzymology , Animals , Cell Line , Disease Models, Animal , Huntingtin Protein , Huntington Disease/genetics , Induced Pluripotent Stem Cells/cytology , Lysosomes/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Pathways/cytology , Neural Pathways/enzymology , Neurons/cytology , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...