Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 36(18): 2314-2323, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26202519

ABSTRACT

l-Arginine is an essential amino acid in Leishmania (Leishmania) amazonensis metabolism. A key enzyme for parasite l-arginine metabolism is arginase (ARG) that uses arginine to produce urea and ornithine, a precursor of polyamine pathway guaranteeing parasite replication in both insect and mammal hosts. There is an alternative pathway to produce ornithine via l-proline and glutamate, but this mechanism is not described in Leishmania. In the mammal host, two enzymes can use l-arginine as substrate, the host ARG and the induced nitric oxide synthase that produces nitric oxide. The competition between induced nitric oxide synthase and both parasite and host ARG can favor the success of the infection or its control. Here, we established the metabolomics profile of the polyamine pathway of wild type (WT) L. (L.) amazonensis, submitted or not to l-arginine starvation, and compared to the ARG-knockout mutant (arg- ). Our results indicated that arginine starvation induces a decrease in arginine, ornithine, and putrescine, but we could not detect the significative level changes of spermidine, spermine, or agmatine. However, the absence of ARG on the arg- induced an increase of arginine and citrulline levels, but decreased the levels of ornithine and putrescine. Similarly to the WT arginine-starved parasites, the arg- parasites presented lower levels of proline when compared to the WT ones. This could be indicative of an alternative pathway to surpass the enzyme or its substrate absence.

2.
PLoS One ; 10(7): e0130675, 2015.
Article in English | MEDLINE | ID: mdl-26161866

ABSTRACT

There is a rising resistance against antimony drugs, the gold-standard for treatment until some years ago. That is a serious problem due to the paucity of drugs in current clinical use. In a research to reveal how these drugs affect the parasite during treatment and to unravel the underlying basis for their resistance, we have employed metabolomics to study treatment in Leishmania infantum promastigotes. This was accomplished first through the untargeted analysis of metabolic snapshots of treated and untreated parasites both resistant and responders, utilizing a multiplatform approach to give the widest as possible coverage of the metabolome, and additionally through novel monitoring of the origin of the detected alterations through a 13C traceability experiment. Our data stress a multi-target metabolic alteration with treatment, affecting in particular the cell redox system that is essential to cope with detoxification and biosynthetic processes. Additionally, relevant changes were noted in amino acid metabolism. Our results are in agreement with other authors studying other Leishmania species.


Subject(s)
Antimony/pharmacology , Antiprotozoal Agents/pharmacology , Drug Resistance , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Metabolome/drug effects , Chromatography, Liquid/methods , Humans , Leishmania infantum/metabolism , Leishmaniasis, Visceral/parasitology , Metabolomics/methods , Tandem Mass Spectrometry/methods
3.
Anal Bioanal Chem ; 406(14): 3459-76, 2014 May.
Article in English | MEDLINE | ID: mdl-24722876

ABSTRACT

Miltefosine (MT) (hexadecylphosphocholine) was implemented to cope with resistance against antimonials, the classical treatment in Leishmaniasis. Given the scarcity of anti- Leishmania (L) drugs and the increasing appearance of resistance, there is an obvious need for understanding the mechanism of action and development of such resistance. Metabolomics is an increasingly popular tool in the life sciences due to it being a relatively fast and accurate technique that can be applied either with a particular focus or in a global manner to reveal new knowledge about biological systems. Three analytical platforms, gas chromatography (GC), liquid chromatography (LC) and capillary electrophoresis (CE) have been coupled to mass spectrometry (MS) to obtain a broad picture of metabolic changes in the parasite. Impairment of the polyamine metabolism from arginine (Arg) to trypanothione in susceptible parasites treated with MT was in some way expected, considering the reactive oxygen species (ROS) production described for MT. Importantly, in resistant parasites an increase in the levels of amino acids was the most outstanding feature, probably related to the adaptation of the resistant strain for its survival inside the parasitophorous vacuole.


Subject(s)
Drug Resistance , Leishmania donovani/metabolism , Metabolomics , Phosphorylcholine/analogs & derivatives , Arginine/chemistry , Carbon/chemistry , Chromatography, Gas , Chromatography, Liquid , Electrophoresis, Capillary , Gas Chromatography-Mass Spectrometry , Glutathione/analogs & derivatives , Glutathione/chemistry , Hydrodynamics , Mass Spectrometry , Phosphorylcholine/analysis , Phosphorylcholine/chemistry , Quality Control , Reactive Oxygen Species , Spermidine/analogs & derivatives , Spermidine/chemistry
4.
Electrophoresis ; 33(12): 1901-10, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22740478

ABSTRACT

Metabolomics has become an invaluable tool to unveil biology of pathogens, with immediate application to chemotherapy. It is currently accepted that there is not one single technique capable of obtaining the whole metabolic fingerprint of a biological system either due to their different physical-chemical properties or concentrations. In this work, we have explored the capability of capillary electrophoresis mass spectrometry with a sheathless interface with electrospray ionization (CE-ESI-TOF-MS) to separate metabolites in order to be used as a complementary technique to LC. As proof of concept, we have compared the metabolome of Leishmania infantum promastigotes BCN 150 (Sb (III) IC(50) = 20.9 µM) and its variation when treated with 120 µM of Sb(III) potassium tartrate for 12 h, as well as with its Sb(III) resistant counterpart obtained by growth of the parasites under increasing Sb(III) in a step-wise manner up to 180 µM. The number of metabolites compared were of 264 for BCN150 Sb(III) treated versus nontreated and of 195 for Sb(III) resistant versus susceptible parasites. After successive data filtering, differences in seven metabolites identified in databases for Leishmania pathways, showed the highest significant differences, corresponding mainly to amino acids or their metabolite surrogates. Most of them were assigned to sulfur containing amino acids and polyamine biosynthetic pathways, of special relevance considering the deterioration of the thiol-dependent redox metabolism in Leishmania by Sb(III). Given the low concentrations typical for most of these metabolites, the assay can be considered a success that should be explored for new biological questions.


Subject(s)
Antimony/pharmacology , Leishmania/drug effects , Leishmania/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Drug Resistance , Electrophoresis, Capillary/methods , Metabolome , Metabolomics/methods , Principal Component Analysis , Spectrometry, Mass, Electrospray Ionization/methods
5.
PLoS One ; 6(11): e27818, 2011.
Article in English | MEDLINE | ID: mdl-22114701

ABSTRACT

Leishmania (L.) amazonensis uses arginine to synthesize polyamines to support its growth and survival. Here we describe the presence of two gene copies, arranged in tandem, that code for the arginine transporter. Both copies show similar Open Reading Frames (ORFs), which are 93% similar to the L. (L.) donovani AAP3 gene, but their 5' and 3' UTR's have distinct regions. According to quantitative RT-PCR, the 5.1 AAP3 mRNA amount was increased more than 3 times that of the 4.7 AAP3 mRNA along the promastigote growth curve. Nutrient deprivation for 4 hours and then supplemented or not with arginine (400 µM) resulted in similar 4.7 AAP3 mRNA copy-numbers compared to the starved and control parasites. Conversely, the 5.1 AAP3 mRNA copy-numbers increased in the starved parasites but not in ones supplemented with arginine (p<0.05). These results correlate with increases in amino acid uptake. Both Meta1 and arginase mRNAs remained constant with or without supplementation. The same starvation experiment was performed using a L. (L.) amazonensis null knockout for arginase (arg(-)) and two other mutants containing the arginase ORF with (arg(-)/ARG) or without the glycosomal addressing signal (arg(-)/argΔSKL). The arg(-) and the arg(-)/argΔSKL mutants did not show the same behavior as the wild-type (WT) parasite or the arg(-)/ARG mutant. This can be an indicative that the internal pool of arginine is also important for controlling transporter expression and function. By inhibiting mRNA transcription or/and mRNA maturation, we showed that the 5.1 AAP3 mRNA did not decay after 180 min, but the 4.7 AAP3 mRNA presented a half-life decay of 32.6 +/- 5.0 min. In conclusion, parasites can regulate amino acid uptake by increasing the amount of transporter-coding mRNA, possibly by regulating the mRNA half-life in an environment where the amino acid is not present or is in low amounts.


Subject(s)
Arginase/genetics , Arginase/metabolism , Arginine/pharmacology , Leishmania mexicana/drug effects , Leishmania mexicana/metabolism , Membrane Transport Proteins/metabolism , RNA, Messenger/genetics , Biological Transport , Leishmania mexicana/growth & development , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Membrane Transport Proteins/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...