Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Vet Res ; 55(1): 62, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750594

ABSTRACT

The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.


Subject(s)
Deer , Encephalopathy, Bovine Spongiform , Wasting Disease, Chronic , Animals , Norway , Blotting, Western/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Prions/metabolism , Cattle , Immunohistochemistry/veterinary , PrPSc Proteins/metabolism
2.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459071

ABSTRACT

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Subject(s)
Prion Diseases , Prions , Animals , Prions/metabolism , Prion Proteins/genetics , Prion Diseases/genetics , Prion Diseases/metabolism , Mammals/metabolism , Protein Folding
4.
Acta Neuropathol Commun ; 11(1): 145, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679832

ABSTRACT

Among transmissible spongiform encephalopathies or prion diseases affecting humans, sporadic forms such as sporadic Creutzfeldt-Jakob disease are the vast majority. Unlike genetic or acquired forms of the disease, these idiopathic forms occur seemingly due to a random event of spontaneous misfolding of the cellular PrP (PrPC) into the pathogenic isoform (PrPSc). Currently, the molecular mechanisms that trigger and drive this event, which occurs in approximately one individual per million each year, remain completely unknown. Modelling this phenomenon in experimental settings is highly challenging due to its sporadic and rare occurrence. Previous attempts to model spontaneous prion misfolding in vitro have not been fully successful, as the spontaneous formation of prions is infrequent and stochastic, hindering the systematic study of the phenomenon. In this study, we present the first method that consistently induces spontaneous misfolding of recombinant PrP into bona fide prions within hours, providing unprecedented possibilities to investigate the mechanisms underlying sporadic prionopathies. By fine-tuning the Protein Misfolding Shaking Amplification method, which was initially developed to propagate recombinant prions, we have created a methodology that consistently produces spontaneously misfolded recombinant prions in 100% of the cases. Furthermore, this method gives rise to distinct strains and reveals the critical influence of charged surfaces in this process.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Humans , Magnetic Resonance Imaging , Tremor
5.
iScience ; 26(9): 107480, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37636075

ABSTRACT

Prions are deadly infectious agents made of PrPSc, a misfolded variant of the cellular prion protein (PrPC) which self-propagates by inducing misfolding of native PrPC. PrPSc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrPC, eliciting a dual anti-prion effect. Zn(II)-BnPyP binding to a C-terminal pocket destabilizes the native PrPC fold, hindering conversion to PrPSc; Zn(II)-BnPyP binding to the flexible N-terminal tail disrupts N- to C-terminal interactions, triggering PrPC endocytosis and lysosomal degradation, thus reducing the substrate for PrPSc generation. Zn(II)-BnPyP inhibits propagation of different prion strains in vitro, in neuronal cells and organotypic brain cultures. These results identify a PrPC-targeting compound with an unprecedented dual mechanism of action which might be exploited to achieve anti-prion effects without engendering drug resistance.

6.
J Biol Chem ; 299(2): 102823, 2023 02.
Article in English | MEDLINE | ID: mdl-36565989

ABSTRACT

The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.


Subject(s)
Blotting, Western , Peptide Fragments , PrPC Proteins , Proteolysis , Animals , Mice , Blotting, Western/methods , Prion Diseases/metabolism , Prion Diseases/pathology , Prion Diseases/physiopathology , PrPC Proteins/chemistry , PrPC Proteins/genetics , PrPC Proteins/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Brain/metabolism
7.
J Neuropathol Exp Neurol ; 82(2): 169-179, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36458954

ABSTRACT

Fatal familial insomnia (FFI) is a rare prionopathy with unusually high incidence in the Basque Country. We report detailed data on clinical, diagnostic, histopathological, and biochemical characteristics of a recent FFI case series. The Basque Brain Bank database was screened for patients diagnosed from 2010 to 2021 with standard genetic and/or neuropathological criteria. This series includes 16 patients, 25% without family history, with 12 cases from 9 unrelated (but geographically-linked, Basque country) kindreds, onset ranging from 36 to 70 years, and disease course from 7 to 11.5 months. Insomnia was the initial symptom in most cases, with consistent polysomnography in 92% of the cases. In contrast, 14-3-3 and RT-QuIC from cerebrospinal fluid were negative. Most patients were homozygous for methionine. Gliosis and neuronal loss in basal ganglia and thalamus were the main histopathological findings; Western blotting identified preferentially the protease-resistant prion protein (PrPres) type 2, although detection of the scrapie isoform of the prion protein (PrPSc) identified using brain tissue RT-QuIC was more successful. This is one of the largest current studies on FFI patients performed to provide improvements in diagnostic reliability. Among the analyzed tests, polysomnography and the genetic study show the highest diagnostic value in FFI.


Subject(s)
Insomnia, Fatal Familial , Prions , Humans , Insomnia, Fatal Familial/diagnosis , Insomnia, Fatal Familial/genetics , Insomnia, Fatal Familial/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Reproducibility of Results , Prions/genetics , Brain/pathology
8.
Acta Neuropathol Commun ; 10(1): 179, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36514160

ABSTRACT

Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.


Subject(s)
Prion Diseases , Prions , Scrapie , Mice , Animals , Sheep , Humans , Scrapie/metabolism , Rodentia/metabolism , Prions/metabolism , Mice, Transgenic , Arvicolinae/metabolism
9.
PLoS Pathog ; 18(10): e1010900, 2022 10.
Article in English | MEDLINE | ID: mdl-36206325

ABSTRACT

The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.


Subject(s)
Creutzfeldt-Jakob Syndrome , Encephalopathy, Bovine Spongiform , Prions , Animals , Sheep , Cattle , Mice , Humans , Swine , Encephalopathy, Bovine Spongiform/pathology , Mice, Transgenic , Brain/pathology , Creutzfeldt-Jakob Syndrome/pathology , Prions/metabolism , Polysaccharides/metabolism , Sheep, Domestic/metabolism
10.
J Neurol ; 269(8): 4253-4263, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35294616

ABSTRACT

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare neurodegenerative illness that belongs to the group of hereditary or familial Transmissible Spongiform Encephalopathies (TSE). Due to the presence of different pathogenic alterations in the prion protein (PrP) coding gene, it shows an enhanced proneness to misfolding into its pathogenic isoform, leading to prion formation and propagation. This aberrantly folded protein is able to induce its conformation to the native counterparts forming amyloid fibrils and plaques partially resistant to protease degradation and showing neurotoxic properties. PrP with A117V pathogenic variant is the second most common genetic alteration leading to GSS and despite common phenotypic and neuropathological traits can be defined for each specific variant, strikingly heterogeneous manifestations have been reported for inter-familial cases bearing the same pathogenic variant or even within the same family. Given the scarcity of cases and their clinical, neuropathological, and biochemical variability, it is important to characterize thoroughly each reported case to establish potential correlations between clinical, neuropathological and biochemical hallmarks that could help to define disease subtypes. With that purpose in mind, this manuscript aims to provide a detailed report of the first Spanish GSS case associated with A117V variant including clinical, genetic, neuropathological and biochemical data, which could help define in the future potential disease subtypes and thus, explain the high heterogeneity observed in patients suffering from these maladies.


Subject(s)
Gerstmann-Straussler-Scheinker Disease , Prions , Amyloid/genetics , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Humans , Mutation , Plaque, Amyloid , Prions/genetics , Prions/metabolism
11.
Neurology ; 98(14): e1434-e1445, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35110380

ABSTRACT

BACKGROUND AND OBJECTIVES: For early diagnosis and disease monitoring of neurodegenerative diseases (NDs), reliable blood biomarkers are needed. Elevated levels of neurofilament light chain protein (NfL), an axonal damage marker, have been described across different NDs, with highest values in prion diseases and amyotrophic lateral sclerosis (ALS). Synaptic degeneration is a common early feature in most NDs and seems to precede neuronal degeneration in prion disease. However, synaptic markers in blood are still missing. Here, we investigated whether the brain-specific protein ß-synuclein might be a suitable blood biomarker for early diagnosis and evaluation of synaptic integrity in prion disease. METHODS: We analyzed blood ß-synuclein with a newly established digital ELISA and NfL with a single-molecule array in samples obtained from human participants and prion and ALS animal models. Furthermore, ß-synuclein was investigated in brain tissue of individuals with Creutzfeldt-Jakob disease (CJD) and controls. RESULTS: We investigated 308 patients, including 129 cases with prion disease, 8 presymptomatic PRNP variation carriers, 60 with ALS, 68 with other ND, and 43 control patients. In CJD symptomatic cases, ß-synuclein and NfL were markedly increased compared to all other diagnostic groups (p < 0.001). In the large majority of presymptomatic PRNP variation carriers, ß-synuclein and NfL levels were within normal ranges. In prion disease animal models, ß-synuclein and NfL displayed normal levels in the presymptomatic phase with a sudden elevation at disease onset and a plateau in the symptomatic phase. In contrast to NfL, ß-synuclein was not elevated in either symptomatic patients with ALS or an ALS animal model. In the discrimination between prion disease and all other groups, ß-synuclein (area under the curve 0.97, 95% CI 0.94-0.99, p < 0.001) was superior to NfL (area under the curve 0.91, 95% CI 0.88-0.94, p < 0.001). In addition, brain tissue ß-synuclein showed significantly reduced levels in patients with CJD compared to control patients (p < 0.001). DISCUSSION: Blood ß-synuclein was significantly elevated in patients with CJD, reflecting ongoing synaptic damage, and showed good discriminative characteristics. We therefore propose it as a candidate blood marker for early diagnosis and monitoring of synaptic integrity in prion disease. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that serum ß-synuclein concentration accurately distinguishes patients with symptomatic CJD from controls.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , beta-Synuclein/biosynthesis , Biomarkers , Creutzfeldt-Jakob Syndrome/diagnosis , Humans , Intermediate Filaments , Neurofilament Proteins , Prion Diseases/diagnosis
12.
Alzheimers Res Ther ; 13(1): 176, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663460

ABSTRACT

BACKGROUND: More than 40 pathogenic heterozygous PRNP mutations causing inherited prion diseases have been identified to date. Recessive inherited prion disease has not been described to date. METHODS: We describe the clinical and neuropathological data of inherited early-onset prion disease caused by the rare PRNP homozygous mutation R136S. In vitro PrPSc propagation studies were performed using recombinant-adapted protein misfolding cyclic amplification technique. Brain material from two R136S homozygous patients was intracranially inoculated in TgMet129 and TgVal129 transgenic mice to assess the transmissibility of this rare inherited form of prion disease. RESULTS: The index case presented symptoms of early-onset dementia beginning at the age of 49 and died at the age of 53. Neuropathological evaluation of the proband revealed abundant multicentric PrP plaques and Western blotting revealed a ~ 8 kDa protease-resistant, unglycosylated PrPSc fragment, consistent with a Gerstmann-Sträussler-Scheinker phenotype. Her youngest sibling suffered from progressive cognitive decline, motor impairment, and myoclonus with onset in her late 30s and died at the age of 48. Genetic analysis revealed the presence of the R136S mutation in homozygosis in the two affected subjects linked to homozygous methionine at codon 129. One sibling carrying the heterozygous R136S mutation, linked to homozygous methionine at codon 129, is still asymptomatic at the age of 74. The inoculation of human brain homogenates from our index case and an independent case from a Portuguese family with the same mutation in transgenic mice expressing human PrP and in vitro propagation of PrPSc studies failed to show disease transmissibility. CONCLUSION: In conclusion, biallelic R136S substitution is a rare variant that produces inherited early-onset human prion disease with a Gerstmann-Sträussler-Scheinker neuropathological and molecular signature. Even if the R136S variant is predicted to be "probably damaging", heterozygous carriers are protected, at least from an early onset providing evidence for a potentially recessive pattern of inheritance in human prion diseases.


Subject(s)
Gerstmann-Straussler-Scheinker Disease , Prion Diseases , Prions , Animals , Brain/diagnostic imaging , Brain/metabolism , Female , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Mice , Mutation/genetics , Prion Diseases/genetics , Prion Proteins/genetics , Prions/metabolism , Recombinant Proteins
14.
Biosystems ; 210: 104542, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34517077

ABSTRACT

Prions or PrPSc (prion protein, Scrapie isoform) are proteins with an aberrant three-dimensional conformation that present the ability to alter the three-dimensional structure of natively folded PrPC (prion protein, cellular isoform) inducing its abnormal folding, giving raise to neurological diseases known as Transmissible spongiforms encephalopathies (TSEs) or prion diseases. In this work, through a biosemiotic study, we will analyze the molecular code of meanings that are known in the molecular pathway of PrPC and how it is altered in prion diseases. This biosemiotic code presents a socio-semiotic correlate in organisms that could be unraveled with the ultimate goal of understanding the code of signs that mediates the process. Finally, we will study recent works that indicate possible relationships in the code between prion proteins and other proteins such as the tau protein and alpha-synuclein to evaluate if it is possible that there is a semiotic expansion of the PrP code and prion diseases in the meaning recently expounded by Prusiner, winner of the Nobel Prize for describing these unusual pathological processes.


Subject(s)
Genetic Code/genetics , Prion Diseases/genetics , Prion Proteins/genetics , Animals , Humans , Prion Diseases/diagnosis , Proteostasis Deficiencies/diagnosis , Proteostasis Deficiencies/genetics
15.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201940

ABSTRACT

Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.


Subject(s)
Biomarkers , Extracellular Vesicles/metabolism , MicroRNAs/genetics , Prion Diseases/genetics , Prion Diseases/metabolism , Exosomes/metabolism , Extracellular Vesicles/ultrastructure , MicroRNAs/blood , MicroRNAs/cerebrospinal fluid , Prion Diseases/blood , Prion Diseases/cerebrospinal fluid
16.
Eur J Neurol ; 28(9): 2901-2906, 2021 09.
Article in English | MEDLINE | ID: mdl-34060706

ABSTRACT

BACKGROUND AND PURPOSE: Sporadic Creutzfeldt-Jakob disease is a rapidly progressing and highly variable neurodegenerative disease with heterogeneous clinical presentation and a median survival time from diagnosis to death of 4-6 months. METHODS: We report a rare case of a 61-year-old woman with a history of initially rapidly progressive dementia, with subsequent development of pyramidal and extrapyramidal signs and with an unusually long survival period of 14 years. Initial magnetic resonance imaging evaluation, single-photon emission computed tomography, and electroencephalogram did not show relevant alterations. RESULTS: The postmortem examination of the brain showed diffuse spongiform change, gliosis, and neuronal loss along with abnormal immunostaining of prion protein in the grey matter, especially in the cerebellum. Indirect PRNP genetic analysis was negative. CONCLUSIONS: This case is, to our knowledge, the sporadic Creutzfeldt-Jakob disease patient with the longest survival period ever documented. This surprisingly long duration highlights the importance of histopathological confirmation with brain autopsies for suspected cases, as the disease can easily be misdiagnosed in such slowly progressing cases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prions , Brain/diagnostic imaging , Brain/metabolism , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Female , Humans , Magnetic Resonance Imaging , Middle Aged
17.
J Pers Med ; 11(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071291

ABSTRACT

Congenital erythropoietic porphyria (CEP), also known as Günther's disease, results from a deficient activity in the fourth enzyme, uroporphyrinogen III synthase (UROIIIS), of the heme pathway. Ciclopirox (CPX) is an off-label drug, topically prescribed as an antifungal. It has been recently shown that it also acts as a pharmacological chaperone in CEP, presenting a specific activity in deleterious mutations in UROIIIS. Despite CPX is active at subtoxic concentrations, acute gastrointestinal (GI) toxicity was found due to the precipitation in the stomach of the active compound and subsequent accumulation in the intestine. To increase its systemic availability, we carried out pharmacokinetic (PK) and pharmacodynamic (PD) studies using alternative formulations for CPX. Such strategy effectively suppressed GI toxicity in WT mice and in a mouse model of the CEP disease (UROIIISP248Q/P248Q). In terms of activity, phosphorylation of CPX yielded good results in CEP cellular models but showed limited activity when administered to the CEP mouse model. These results highlight the need of a proper formulation for pharmacological chaperones used in the treatment of rare diseases.

18.
Sci Rep ; 11(1): 7702, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833330

ABSTRACT

Efforts to contain the spread of chronic wasting disease (CWD), a fatal, contagious prion disease of cervids, would be aided by the availability of additional diagnostic tools. RT-QuIC assays allow ultrasensitive detection of prion seeds in a wide variety of cervid tissues, fluids and excreta. The best documented antemortem diagnostic test involving RT-QuIC analysis targets lymphoid tissue in rectal biopsies. Here we have tested a more easily accessed specimen, ear pinna punches, using an improved RT-QuIC assay involving iron oxide magnetic extraction to detect CWD infections in asymptomatic mule and white-tailed deer. Comparison of multiple parts of the ear pinna indicated that a central punch spanning the auricular nerve provided the most consistent detection of CWD infection. When compared to results obtained from gold-standard retropharyngeal lymph node specimens, our RT-QuIC analyses of ear samples provided apparent diagnostic sensitivity (81%) and specificity (91%) that rivaled, or improved upon, those observed in previous analyses of rectal biopsies using RT-QuIC. These results provide evidence that RT-QuIC analysis of ear pinna punches may be a useful approach to detecting CWD infections in cervids.


Subject(s)
Ear, External/pathology , Wasting Disease, Chronic/diagnosis , Animals , Deer , Enzyme-Linked Immunosorbent Assay , Prions/isolation & purification , Species Specificity , Wasting Disease, Chronic/pathology
19.
Int J Mol Sci ; 22(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466523

ABSTRACT

Prion diseases are a group of neurodegenerative disorders that can be spontaneous, familial or acquired by infection. The conversion of the prion protein PrPC to its abnormal and misfolded isoform PrPSc is the main event in the pathogenesis of prion diseases of all origins. In spontaneous prion diseases, the mechanisms that trigger the formation of PrPSc in the central nervous system remain unknown. Several reports have demonstrated that the accumulation of PrPSc can induce endoplasmic reticulum (ER) stress and proteasome impairment from the early stages of the prion disease. Both mechanisms lead to an increment of PrP aggregates in the secretory pathway, which could explain the pathogenesis of spontaneous prion diseases. Here, we investigate the role of ER stress and proteasome impairment during prion disorders in a murine model of spontaneous prion disease (TgVole) co-expressing the UbG76V-GFP reporter, which allows measuring the proteasome activity in vivo. Spontaneously prion-affected mice showed a significantly higher accumulation of the PKR-like ER kinase (PERK), the ER chaperone binding immunoglobulin protein (BiP/Grp78), the ER protein disulfide isomerase (PDI) and the UbG76V-GFP reporter than age-matched controls in certain brain areas. The upregulation of PERK, BiP, PDI and ubiquitin was detected from the preclinical stage of the disease, indicating that ER stress and proteasome impairment begin at early stages of the spontaneous disease. Strong correlations were found between the deposition of these markers and neuropathological markers of prion disease in both preclinical and clinical mice. Our results suggest that both ER stress and proteasome impairment occur during the pathogenesis of spontaneous prion diseases.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/metabolism , Neurodegenerative Diseases/metabolism , Prion Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Female , Male , Mice , Prion Diseases/metabolism , Protein Transport/physiology , Ubiquitin/metabolism
20.
Front Bioeng Biotechnol ; 8: 589182, 2020.
Article in English | MEDLINE | ID: mdl-33195153

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are a group of invariably fatal neurodegenerative disorders. The causal agent is an aberrantly folded isoform (PrPSc or prion) of the endogenous prion protein (PrPC) which is neurotoxic and amyloidogenic and induces misfolding of its physiological counterpart. The intrinsic physical characteristics of these infectious proteinaceous pathogens makes them highly resistant to the vast majority of physicochemical decontamination procedures used typically for standard disinfection. This means prions are highly persistent in contaminated tissues, the environment (surfaces) and, of great concern, on medical and surgical instruments. Traditionally, decontamination procedures for prions are tested on natural isolates coming from the brain of infected individuals with an associated high heterogeneity resulting in highly variable results. Using our novel ability to produce highly infectious recombinant prions in vitro we adapted the system to enable recovery of infectious prions from contaminated materials. This method is easy to perform and, importantly, results in highly reproducible propagation in vitro. It exploits the adherence of infectious prion protein to beads of different materials allowing accurate and repeatable assessment of the efficacy of disinfectants of differing physicochemical natures to eliminate infectious prions. This method is technically easy, requires only a small shaker and a standard biochemical technique and could be performed in any laboratory.

SELECTION OF CITATIONS
SEARCH DETAIL
...