Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 96(12): 5276-5286, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30169710

ABSTRACT

Sustainability of animal agriculture requires efficient use of energy and nitrogen (N) by ruminants fed high-forage diets. Thus, there is a need to decrease methane (CH4) emissions and prevent excessive N release into the environment. Therefore, this experiment examined the long-term effects of feeding hydrolyzable tannin (HT) with or without condensed tannin (CT) on animal performance, rumen fermentation, N use, and CH4 production in beef cattle fed a high-forage diet. A total of 75 weaned crossbred steers (292 ± 4.1 kg) were grouped by body weight (BW), housed in individual pens, and randomly assigned to 1 of 5 dietary treatments (15 animals/treatment) in a completely random design. The animals were fed a basal diet of alfalfa:barley silages (50:50; dry matter [DM] basis) with a crude protein content of 17.1% and supplemented with HT extract (chestnut, CN) or a combination (50:50) of HT and CT extracts (quebracho, Q) in a powdered form at different levels of dietary DM. The treatments for determining animal performance and N use were control (no tannin), 0.25% CN, 1.5% CN, combination of CN and Q at 0.125% each (0.25% CNQ), and CN and Q at 0.75% each (1.5% CNQ) of dietary DM. The treatments for the CH4 measurement were control, 1.5% CN, and 1.5% CNQ of dietary DM. The first 84 d of the study were used to measure animal performance, rumen fermentation, and N use, and the next 30 d were used to measure CH4 emissions with the tracer gas technique. There were no effects of treatment on DM intake (DMI), BW, average daily gain, and gain: feed (P ≥ 0.10). The plasma urea N concentration was greater (P < 0.05) for 1.5% CN and 1.5% CNQ than those fed 0.25% CNQ (120.9 and 120.4 vs. 111.7 mg/L, respectively), but not different (P > 0.05) from animals fed control or 0.25% CN (117.2 and 117.5 mg/L, respectively). Tannin inclusion did not affect rumen pH, total volatile fatty acid concentration, proportions of acetate and propionate, and total protozoa populations (P ≥ 0.16). Tannin, irrespective of type or dose, decreased (P < 0.01) ruminal ammonia concentration. Tannin type and dose did not affect (P = 0.54) daily CH4 production (154 ± 5.9 g/d) but 1.5% CNQ tended to decrease CH4 yield compared with control (20.6 vs. 22.0 g/kg DMI; P = 0.094). HT from CN alone or in combination with CT from Q can be added at a low (0.25% DM) or high (1.5% DM) level to a forage-based diet to decrease ruminal ammonia concentration in growing beef cattle fed a high-protein diet without adverse effects on animal performance. A combination of HT and CT at a concentration of 1.5% dietary DM also tended to decrease CH4 emissions without negatively affecting performance.


Subject(s)
Cattle/physiology , Dietary Supplements/analysis , Hydrolyzable Tannins/pharmacology , Methane/metabolism , Nitrogen/metabolism , Proanthocyanidins/pharmacology , Ammonia/metabolism , Animals , Body Weight , Diet/veterinary , Fermentation , Hordeum , Male , Medicago sativa , Random Allocation , Rumen/metabolism , Silage/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...