Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Reprod Domest Anim ; 59(5): e14578, 2024 May.
Article in English | MEDLINE | ID: mdl-38715446

ABSTRACT

To the best of the authors' knowledge, no study has previously investigated whether the concentration of minerals is related to reproductive outcomes in primiparous cows. For this reason, two objectives were set in the present study: (i) to assess serum mineral levels, macrominerals, and trace elements during the transition period (period of high nutritional requirements) in primiparous cows, considering reproductive efficiency, and (ii) to address if the serum mineral levels of primiparous cows are related to reproductive efficiency. Blood samples were taken (i) one month before calving, (ii) one week before calving, (iii) one week postpartum, and (iv) one month postpartum. At the beginning and the end of the study, a body condition score (BCS) was assigned to each lactating cow with no clinical signs of disease. The difference between one month before and one month after calving was the body condition loss (ΔBCS). Optimal prepartum concentrations of K and Cl were associated with fewer days open and a shorter interval calving. Furthermore, macrominerals in the serum decreased immediately after calving (one week) but recovered at one month postpartum. In contrast, the highest concentration of trace elements was found at one week postpartum. Primiparous cows with higher postpartum Se, Mn, Co, and Mo concentrations exhibited better reproductive efficiency, and the concentrations of trace elements in serum were correlated with interval calving and the number of inseminations. Finally, primiparous cows with a greater ΔBCS (at least one point) in period 4 exhibited both a longer calving interval and a greater number of days open. In summary, this study showed, for the first time in primiparous cows, that the concentration of some serum minerals not only plays a crucial role during the transition period but is also related to crucial reproductive parameters, such as interval calving and days open.


Subject(s)
Lactation , Minerals , Parity , Peripartum Period , Reproduction , Animals , Female , Cattle/physiology , Cattle/blood , Peripartum Period/blood , Pregnancy , Minerals/blood , Reproduction/physiology , Lactation/physiology , Trace Elements/blood , Postpartum Period/blood
2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617233

ABSTRACT

Ferroptosis is an iron-dependent, non-apoptotic form of cell death resulting from the accumulation of lipid peroxides. Colorectal cancer (CRC) accumulates high levels of intracellular iron and reactive oxygen species (ROS), thereby sensitizing cells to ferroptosis. The selenoprotein glutathione peroxidase (GPx4) is a key enzyme in the detoxification of lipid peroxides and can be inhibited by the compound (S)-RSL3 ([1S,3R]-RSL3). However, the stereoisomer (R)-RSL3 ([1R,3R]-RSL3), which does not inhibit GPx4, exhibits equipotent activity to (S)-RSL3 across a panel of CRC cell lines. Utilizing CRC cell lines with an inducible knockdown of GPx4, we demonstrate that (S)-RSL3 sensitivity does not align with GPx4 dependency. Subsequently, a biotinylated (S)-RSL3 was then synthesized to perform affinity purification-mass spectrometry (AP-MS), revealing that (S)-RSL3 acts as a pan-inhibitor of the selenoproteome, targeting both the glutathione and thioredoxin peroxidase systems as well as multiple additional selenoproteins. To investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed further chemical and genetic approaches to disrupt selenoprotein function. The findings demonstrate that the selenoprotein inhibitor Auranofin can induce ferroptosis and/or oxidative cell death both in-vitro and in-vivo. Consistent with this data we observe that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translational incorporation of selenocysteine, is essential for CRC growth. In summary, our research elucidates the complex mechanisms underlying ferroptosis in CRC and reveals that modulation of the selenoproteome provides multiple new therapeutic targets and opportunities in CRC.

3.
ISME Commun ; 4(1): ycae004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38425478

ABSTRACT

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 µm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.

4.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G53-G66, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37933447

ABSTRACT

Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1ß, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.


Subject(s)
Colitis-Associated Neoplasms , Colonic Neoplasms , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Body Weight , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Colitis-Associated Neoplasms/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Cytokines , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation , Neutrophils , Tumor Microenvironment
5.
Medicina (Kaunas) ; 59(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37763746

ABSTRACT

Anaplastic large cell lymphoma (ALCL) with leukaemic presentation (either ab initio or along the course of the disease) has been rarely reported. Irrespective of ALK expression in the neoplastic cells, it features a dismal prognosis. We report a rare case of leukaemic, small cell variant ALK-positive ALCL with 9-year survival in a young woman who was treated upfront with corticosteroids and standard chemotherapy, and review thoroughly the previously published cases. Such an unexpected, good outcome hints at the existence of different clinical subgroups in the leukaemic variant of ALK-positive ALCL.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Female , Humans , Lymphoma, Large-Cell, Anaplastic/diagnosis , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Anaplastic Lymphoma Kinase , Receptor Protein-Tyrosine Kinases/therapeutic use , Prognosis
6.
Sci Total Environ ; 905: 166923, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37704133

ABSTRACT

Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 µm to 398 µm, with a median value of 71 µm. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m-2 day-1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m-2 day-1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

7.
Rev Esp Enferm Dig ; 115(12): 750-751, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37539537

ABSTRACT

Melanoma is a cancer that frequently metastasises to the small bowel, but most cases are asymptomatic and are diagnosed postmortem. Therefore, CT and PET CT cannot detect all lesions and conventional endoscopic study only detects 10-20% of lesions. In this study, we present the case of a 68-year-old patient with a history of cutaneous melanoma and a diagnosis of intestinal melanoma. Thanks to capsule endoscopy, two lesions compatible with cutaneous melanoma metastasis to the small bowel were detected, allowing a much more effective surgical planning. Capsule endoscopy is an innovative technique that improves preoperative diagnosis, as it is able to detect bowel segments that cannot be inspected by conventional endoscopy. It also has a better resolution than conventional CT, improving sensitivity in the detection of lesions.


Subject(s)
Capsule Endoscopy , Intestinal Neoplasms , Melanoma , Skin Neoplasms , Humans , Aged , Melanoma/diagnostic imaging , Melanoma/pathology , Capsule Endoscopy/methods , Skin Neoplasms/pathology , Endoscopy, Gastrointestinal , Intestine, Small/pathology , Intestinal Neoplasms/diagnostic imaging , Intestinal Neoplasms/surgery , Gastrointestinal Hemorrhage/pathology
8.
Autoimmun Rev ; 22(10): 103404, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543287

ABSTRACT

Systemic lupus erythematosus is a chronic autoimmune disease characterized by loss of tolerance against nuclear and cytoplasmic self-antigens, induction of immunity and tissue inflammation. Lupus nephritis (LN), the most important predictor of morbidity in SLE, develops in almost 30% of SLE patients at disease onset and in up to 50-60% within the first 10 years. Firstly, in this review, we put the pathogenic mechanisms of the disease into a conceptual frame, giving emphasis to the role of the innate immune system in this loss of self-tolerance and the induction of the adaptive immune response. In this aspect, many mechanisms have been described such as dysregulation and acceleration of cell-death pathways, an aberrant clearance and overload of immunogenic acid-nucleic-containing debris and IC, and the involvement of antigen-presenting cells and other innate immune cells in the induction of this adaptive immune response. This result in a clonal expansion of autoreactive lymphocytes with generation of effector T-cells, memory B-cells and plasma cells that produce autoantibodies that will cause kidney damage. Secondly, we review the immunological pathways of damage in the kidney parenchyma, initiated by autoantibody binding and immune complex deposition, and followed by complement-mediated microvascular injury, activation of kidney stromal cells and the recruitment of leukocytes. Finally, we summarize the rationale for the treatment of LN, from conventional to new targeted therapies, focusing on their systemic immunologic effects and the minimization of podocytary damage.

9.
Water Res ; 238: 120044, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37156103

ABSTRACT

The purpose of this study was to investigate the occurrence of microplastics (MPs) in drinking water in Spain by comparing tap water from different locations using common sampling and identification procedures. We sampled tap water from 24 points in 8 different locations from continental Spain and the Canary Islands by means of 25 µm opening size steel filters coupled to household connections. All particles were measured and spectroscopically characterized including not only MPs but also particles consisting of natural materials with evidence of industrial processing, such as dyed natural fibres, referred insofar as artificial particles (APs). The average concentration of MPs was 12.5 ± 4.9 MPs/m3 and that of anthropogenic particles 32.2 ± 12.5 APs/m3. The main synthetic polymers detected were polyamide, polyester, and polypropylene, with lower counts of other polymers including the biopolymer poly(lactic acid). Particle size and mass distributions were parameterized by means of power law distributions, which allowed performing estimations of the concentration of smaller particles provided the same scaling parameter of the power law applies. The calculated total mass concentration of the identified MPs was 45.5 ng/L. The observed size distribution of MPs allowed an estimation for the concentration of nanoplastics (< 1 µm) well below the ng/L range; higher concentrations are not consistent with scale invariant fractal fragmentation. Our findings showed that MPs in the drinking water sampled in this work do not represent a significant way of exposure to MPs and would probably pose a negligible risk for human health.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Drinking Water/analysis , Spain , Cities , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers
10.
J Biol Chem ; 299(5): 104691, 2023 05.
Article in English | MEDLINE | ID: mdl-37037306

ABSTRACT

Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Mitophagy , Protein Kinases , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Ferritins , Iron/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Animals (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36830517

ABSTRACT

Enteric methane (CH4) is one of the main greenhouse gases emitted in livestock production systems with ruminants. Among the options to reduce such emissions, animal genetics is one of the factors that is taking relevance in recent years. The aim of the present study was to assess the emission of enteric CH4 in dairy cows with different genetic backgrounds. Sixteen cows belonging to the following three genetic groups were selected for this study: seven F1 (50% Jersey × 50% Gyr), five Triple cross (50% Jersey × 31% Holstein × 19% Sahiwal) and four Jersey. Enteric CH4 emissions were measured in all cows for 15 months, at the middle of each month, using the SF6 technique. Enteric CH4 emissions did not differ (p > 0.05) among genetic groups, although it varied with the stage of lactation, due to differences in milk yield and dry matter intake (DMI). Pasture DMI and the intensity of CH4 emissions (g kg-1 DMI) differed (p < 0.05) between dry and lactating cows, with higher DMI in the lactation period, while CH4 emission intensity was higher for dry cows. Cows with the highest proportion of Bos taurus genes presented a higher annual mean methane conversion factor (Ym), with 7.22, 7.05 and 5.90% for the Triple cross, purebred Jersey and F1, respectively. In conclusion, non-significant differences in enteric CH4 emissions and Ym were detected among dairy cows with different genetic backgrounds. However, F1 cows tended to show lower enteric CH4 emission and Ym, compared to those with more Bos taurus genes.

13.
Vet Res Commun ; 47(3): 1255-1262, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36607499

ABSTRACT

Enzyme adenosine deaminase (ADA) is a marker of inflammation in domestic animals, but it is unclear whether it is a reliable marker of oxidative stress, especially in the transition period in dairy cows. This study aims to assess if ADA and redox status measurements in saliva provide the same utility to detect disease condition as that obtained from serum. Sixty-eight multiparous Holstein cows, between 2 and 3 weeks postpartum were selected. Five study groups were established: control (healthy), and cows with ketosis, mastitis, laminitis, and metritis. The parameters measured were ADA activity, total oxidants (TOS), antioxidants (TAC), and OSi ratio.Regarding redox status, no significant differences arise in both saliva and serum being the correlations negative and not significant. In saliva, ADA activity in healthy cows differs from those with pathological processes, having the lowest activities. In serum, ADA activity is similar in the healthy and ketosis cows, showing the lowest activities meanwhile animals with mastitis, laminitis, or metritis have significantly higher activities. In conclusion, the measurement of ADA activities and redox status in saliva does not give consistent results, being preferable to measure them in serum during the transition period.


Subject(s)
Adenosine Deaminase , Cattle Diseases , Ketosis , Mastitis , Saliva , Animals , Cattle , Female , Adenosine Deaminase/analysis , Adenosine Deaminase/blood , Cattle Diseases/diagnosis , Ketosis/veterinary , Lactation , Mastitis/veterinary , Milk , Oxidation-Reduction , Postpartum Period , Saliva/enzymology
15.
Am J Infect Control ; 51(1): 83-88, 2023 01.
Article in English | MEDLINE | ID: mdl-35339623

ABSTRACT

BACKGROUND: Hand hygiene is key to preventing health care-associated infections. Human observation is the gold standard for measuring compliance, but its utility is increasingly being questioned with calls for the use of video monitoring approaches. The utility of video-based systems to measure compliance according to the WHO 5 moments is largely unexamined, as is its acceptability amongst health care workers (HCW) and patients. This study examined HCW acceptability of video monitoring for hand hygiene auditing. METHODS: Following trial of a video monitoring system (reported elsewhere), 5 participating HCW attended 2 in-depth group interviews where they reviewed the footage and explored responses to the approach. Transcripts were analyzed using thematic analysis. RESULTS: Four themes were identified: 1) Fears; 2) Concerns for patients; 3) Changes to feedback; and 4) Behavioral responses to the cameras. HCWs expressed fears of punitive consequences, data security, and confidentiality. For patients, HCWs raised issues regarding invasion of privacy, ethics, and consent. HCWs suggested that video systems may result in less immediate feedback but also identified potential to use the footage for feedback. They also suggested that the Hawthorne Effect was less potent with video systems than human observation. CONCLUSIONS: The acceptability of video monitoring systems for hand hygiene compliance is complex and has the potential to complicate practical implementation. Additionally, exploration of the acceptability to patients is warranted. CHECKLIST: COREQ.


Subject(s)
Cross Infection , Hand Hygiene , Humans , Guideline Adherence , Health Personnel , Cross Infection/prevention & control , Qualitative Research , Infection Control , Hand Disinfection
16.
Sci Total Environ ; 854: 158683, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36099941

ABSTRACT

Ocean acidification and plastic pollution are considered as potential planetary boundary threats for which crossing certain thresholds could be very harmful for the world's societies and ecosystems well-being. Surface oceans have acidified around 0.1 units since the Industrial Revolution, and the amount of plastic reaching the ocean in 2018 was quantified to 13 million metric tonnes. Currently, both ocean threats are worsening with time. Plastic leaching is known to alter the biogeochemistry of the ocean through the release of dissolved organic matter. However, its impact in the inorganic chemistry of the seawater is less studied. Here we show, from laboratory experiments, that abiotic plastic degradation induces a decrease in seawater pH, particularly if the plastic is already aged, as that found in the ocean. The pH decrease is enhanced by solar radiation, and it is probably induced from a combination of the release of organic acids and the production of CO2. It is also related to the amount of leached dissolved organic carbon, with higher acidification as leaching increases. In coastal areas, where plastic debris accumulates in large quantities, plastic leaching could lead to a seawater pH decrease up to 0.5 units. This is comparable to the projected decrease induced in surface oceans by the end of the twenty-first century for the most pessimistic anthropogenic emissions scenarios.

17.
Chemosphere ; 309(Pt 2): 136809, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228721

ABSTRACT

This work aims at evaluating the fate of microplastics (MPs) along Fenton oxidation. For such goal, realistic MPs (150-250 µm) of five representative polymer types (PET, PE, PVC, PP and EPS) were obtained from commercial plastic products by cryogenic milling. Experiments (7.5 h) were performed under relatively severe operating conditions: T = 80 °C; pH0 = 3; [H2O2]0 = 1000 mgL-1 (15 doses, 1 every 0.5 h); [Fe3+]0 = 10 mgL-1 (5 doses, 1 every 1.5 h). Slight MPs weight losses (∼10%) were achieved after Fenton oxidation regardless the MP nature. Nevertheless, oxidation yield clearly increased with decreasing the particle size given their higher exposed surface area (up to 20% weight loss with 20-50 µm EPS MPs). Clearly, MPs suffered important changes in their surface due to the introduction of oxygenated groups, which made them more acidic and hydrophilic. Furthermore, MPs progressively reduced their size. In fact, they can be completely oxidized to CO2, as demonstrated in the oxidation of PS nanoplastics (140 nm), where 70% mineralization was achieved. The nature of the plastic particles had a relevant impact on its overall oxidation, being more prone to be oxidized those polymers which contain aromatic rings in their structures (EPS and PET) compared to those formed by alkane chains (PE, PP and PVC). In the latter, the presence of substituents also reduced their oxidation potential. Remarkably, possible leachates released along reaction were more quickly oxidized than the MPs/NPs, so it can be assumed that these dissolved compounds would be completely removed once the solid particles are eliminated. Notably, the leachates obtained upon MPs oxidation were more biodegradable than the released from the fresh solids. All this knowledge is crucial for the understanding of MPs oxidation by the Fenton process and opens the door for the design and optimization of this technology either for water treatment or for analytical purposes (MPs isolation).


Subject(s)
Microplastics , Plastics , Hydrogen Peroxide/chemistry , Carbon Dioxide , Polyvinyl Chloride , Alkanes
18.
Am J Surg Pathol ; 46(12): 1623-1632, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36001453

ABSTRACT

Cutaneous lesions in the setting of myeloproliferative neoplasms and myelodysplastic syndromes are poorly understood. We report 6 patients with pruritic papular eruptions composed of mature T-lymphocytes with large clusters of CD123-positive cells. Double immunohistochemical studies demonstrated a lack of myeloid cell nuclear differentiation antigen in the CD123-positive cells, which expressed SPIB, confirming that they were mature plasmacytoid dendritic cells. Four patients were diagnosed with chronic myelomonocytic leukemia and 2 with myelodysplastic syndromes (AREB-I and myelodysplastic syndromes with 5q deletion, respectively). All patients had a long history of hematological alterations, mainly thrombocytopenia, preceding the cutaneous disorder. Nevertheless, the skin lesions developed in all cases coincidentally with either progression or full-establishment of their hematological disease. Most cutaneous lesions disappeared spontaneously or after corticosteroid treatment. Molecular studies performed in both bone marrow and cutaneous lesions in 2 patients demonstrated the same mutational profile, confirming the specific, neoplastic nature of these mature plasmacytoid dendritic cells-composed cutaneous lesions.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Myeloproliferative Disorders , Skin Diseases , Skin Neoplasms , Humans , Interleukin-3 Receptor alpha Subunit , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Dendritic Cells/pathology , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/pathology , Leukemia, Myelomonocytic, Chronic/pathology , Skin Diseases/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
19.
Proc Natl Acad Sci U S A ; 119(26): e2121692119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733263

ABSTRACT

Asian rice (Oryza sativa L.) is consumed by more than half of the world's population. Despite its global importance, the process of early rice domestication remains unclear. During domestication, wild rice (Oryza rufipogon Griff.) acquired non-seed-shattering behavior, allowing humans to increase grain yield. Previous studies argued that a reduction in seed shattering triggered by the sh4 mutation led to increased yield during rice domestication, but our experiments using wild introgression lines show that the domesticated sh4 allele alone is insufficient for shattering loss in O. rufipogon. The interruption of abscission layer formation requires both sh4 and qSH3 mutations, demonstrating that the selection of shattering loss in wild rice was not as simple as previously suggested. Here we identified a causal single-nucleotide polymorphism at qSH3 within the seed-shattering gene OsSh1, which is conserved in indica and japonica subspecies but absent in the circum-aus group of rice. Through harvest experiments, we further demonstrated that seed shattering alone did not significantly impact yield; rather, yield increases were observed with closed panicle formation controlled by SPR3 and further augmented by nonshattering, conferred by integration of sh4 and qSH3 alleles. Complementary manipulation of panicle shape and seed shattering results in a mechanically stable panicle structure. We propose a stepwise route for the earliest phase of rice domestication, wherein selection of visible SPR3-controlled closed panicle morphology was instrumental in the sequential recruitment of sh4 and qSH3, which together led to the loss of shattering.


Subject(s)
Domestication , Genes, Plant , Oryza , Seed Dispersal , Seeds , Alleles , Humans , Mutation , Oryza/genetics , Oryza/physiology , Phenotype , Polymorphism, Single Nucleotide , Seed Dispersal/genetics , Seeds/genetics , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...