Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 91(Pt 10): 2513-23, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20573853

ABSTRACT

Engineered therapeutic viruses provide an alternative method for treating infectious diseases, and mathematical models can clarify the system's dynamics underlying this type of therapy. In particular, this study developed models to evaluate the potential to contain human immunodeficiency virus type 1 (HIV-1) infection using a genetically engineered 'hunter' virus that kills HIV-1-infected cells. First, we constructed a novel model for understanding the progression of HIV infection that predicted the loss of the immune system's CD4(+) T cells across time. Subsequently, it determined the effects of introducing hunter viruses in restoring cell population. The model implemented direct and indirect mechanisms by which HIV-1 may cause cell depletion and an immune response. Results suggest that the slow progression of HIV infection may result from a slowly decaying CTL immune response, leading to a limited but constant removal of uninfected CD4 resting cells through apoptosis - and from resting cell proliferation that reduces the rate of cell depletion over time. Importantly, results show that the hunter virus does restrain HIV infection and has the potential to allow major cell recovery to 'functional' levels. Further, the hunter virus persisted at a reduced HIV load and was effective either early or late in the infection. This study indicates that hunter viruses may halt the progression of the HIV infection by restoring and sustaining high CD4(+) T-cell levels.


Subject(s)
Biological Therapy/methods , HIV Infections/therapy , HIV-1/pathogenicity , CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/growth & development , Humans , Models, Theoretical , T-Lymphocytes, Cytotoxic/immunology
2.
J Theor Biol ; 221(1): 61-77, 2003 Mar 07.
Article in English | MEDLINE | ID: mdl-12634044

ABSTRACT

The main objective of this work is to determine the conditions for coexistence and competitive exclusion in a discrete model for a community of three species: a stage-structured host and two competing parasitoids sharing the same host developmental stage. Coexistence of the community of the species is found to depend on the host life history parameters in the first place, and on competitive ability and parasitoid efficiency in the second place. In particular, parasitoids equilibrium densities are defined by the size of the refuge. Extinction is expected with low growth rate and with low adult survival. Host life histories are also associated with oscillations in population density, and depending on the combination of host adult survival from one generation to the next and host growth rate, the minimum of fluctuations approaches zero, implying a higher potential risk of extinction because of stochastic factors. Our results suggest that equally reduced survival of parasitoids in hosts parasitized by both species determines extinction of the parasitoid with lower population density, in contrast to the case when both parasitoids benefit with 50% of all doubly parasitized hosts, leading to the hypothesis that a community where competitors in multiparasitized hosts die, easily becomes extinct. Competitive exclusion is expected for highly asymmetric competitive interactions, independent of population densities, allowing us to hypothesize that coexistence of competitors in systems with limited resources and refuges is associated with a clearly defined competitive hierarchy.


Subject(s)
Competitive Behavior , Host-Parasite Interactions , Models, Biological , Animals , Life Cycle Stages , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...