Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
1.
J Affect Disord ; 358: 292-301, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697222

ABSTRACT

BACKGROUND: Recent systematic reviews highlight great variability in defining and assessing treatment-resistant depression (TRD). A key problem is that definitions are consensus rather than data-led. This study seeks to offer a comprehensive socio-demographic and clinical description of a relevant sample. METHODS: As part of a pragmatic randomized controlled trial, patients (N = 129) were managed in primary care for persistent depression and diagnosed with TRD. Data included previous treatment attempts, characteristics of the depressive illness, functioning, quality of life, co-occurring problems including suicidality, psychiatric and personality disorders, physical health conditions, and adverse events. RESULTS: Findings show a severe and chronic course of depression with a duration of illness of 25+ years. Overall, 82.9 % had at least one other psychiatric diagnosis and 82.2 % at least one personality disorder; 69.8 % had significant musculoskeletal, gastrointestinal, genitourinary, or cardiovascular and respiratory physical health problems. All but 14 had severe difficulties in social and occupational functioning and reported severely impaired quality of life. Suicidal ideation was high: 44.9 % had made at least one serious suicide attempt and several reported multiple attempts with 17.8 % reporting a suicide attempt during childhood or adolescence. Of the patients, 79.8 % reported at least one adverse childhood experience. LIMITATIONS: Potential for recall bias, not examining possible interactions, and absence of a control group. CONCLUSIONS: Our findings reveal a complex and multifaceted condition and call for an urgent reconceptualization of TRD, which encompasses many interdependent variables and experiences. Individuals with TRD may be at a serious disadvantage in terms of receiving adequate treatment.


Subject(s)
Depressive Disorder, Treatment-Resistant , Quality of Life , Suicidal Ideation , Suicide, Attempted , Adult , Female , Humans , Male , Middle Aged , Comorbidity , Depressive Disorder, Treatment-Resistant/therapy , Personality Disorders/therapy , Personality Disorders/epidemiology , Suicide, Attempted/statistics & numerical data
2.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676044

ABSTRACT

This research paper delves into the effectiveness and impact of behavior change techniques fostered by information technologies, particularly wearables and Internet of Things (IoT) devices, within the realms of engineering and computer science. By conducting a comprehensive review of the relevant literature sourced from the Scopus database, this study aims to elucidate the mechanisms and strategies employed by these technologies to facilitate behavior change and their potential benefits to individuals and society. Through statistical measurements and related works, our work explores the trends over a span of two decades, from 2000 to 2023, to understand the evolving landscape of behavior change techniques in wearable and IoT technologies. A specific focus is placed on a case study examining the application of behavior change techniques (BCTs) for monitoring vital signs using wearables, underscoring the relevance and urgency of further investigation in this critical intersection of technology and human behavior. The findings shed light on the promising role of wearables and IoT devices for promoting positive behavior modifications and improving individuals' overall well-being and highlighting the need for continued research and development in this area to harness the full potential of technology for societal benefit.


Subject(s)
Internet of Things , Wearable Electronic Devices , Humans
4.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38438256

ABSTRACT

Recognizing faces regardless of their viewpoint is critical for social interactions. Traditional theories hold that view-selective early visual representations gradually become tolerant to viewpoint changes along the ventral visual hierarchy. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest a three-stage architecture including an intermediate face-selective patch abruptly achieving invariance to mirror-symmetric face views. Human studies combining neuroimaging and multivariate pattern analysis (MVPA) have provided convergent evidence of view selectivity in early visual areas. However, contradictory conclusions have been reached concerning the existence in humans of a mirror-symmetric representation like that observed in macaques. We believe these contradictions arise from low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two face databases. Analyses of image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across neuroimaging studies, we constructed a network model incorporating three constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network-layers is sufficient to replicate view-tuning in early processing stages and mirror-symmetry in later stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the inconsistent observation of mirror-symmetry across prior studies. Pattern analyses of human fMRI data (of either sex) revealed biases compatible with our model. The model provides a unifying explanation of MVPA studies of viewpoint selectivity and suggests observations of mirror-symmetry originate from ineffectively normalized signal imbalances across different face views.


Subject(s)
Facial Recognition , Humans , Male , Female , Facial Recognition/physiology , Adult , Neuroimaging/methods , Photic Stimulation/methods , Models, Neurological , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods , Young Adult
5.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38410482

ABSTRACT

Pupillometry is a popular method because pupil size is an easily measured and sensitive marker of neural activity and associated with behavior, cognition, emotion, and perception. Currently, there is no method for monitoring the phases of pupillary fluctuation in real time. We introduce rtPupilPhase - a software that automatically detects trends in pupil size in real time, enabling novel implementations of real time pupillometry towards achieving numerous research and translational goals.

7.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38168380

ABSTRACT

Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g., conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down, brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g., imagery, hallucinations, and dreams) that occur without bottom-up, sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.

8.
Chemistry ; 30(10): e202303935, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38031971

ABSTRACT

The unique dynamic configuration of an enantioselective chiral-at-metal catalyst based on Rh(III) and a non-chiral tetradentate ligand is described and resolved. At room temperature, the catalyst undergoes a dynamic configuration process leading to the formation of two interconvertible metal-stereoisomers, remarkably without racemization. Density functional theory (DFT) calculations indicate that this metal-isomerization proceeds via a concerted transition state, which features a trigonal bipyramidal geometry stabilized by the tetradentate ligand. Furthermore, the resolved enantiopure complex shows high catalytic enantioinduction in the Friedel-Crafts reaction, achieving enantiomeric ratios as high as 99 : 1.

9.
Med Image Anal ; 91: 103010, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950937

ABSTRACT

Conventionally, analysis of functional MRI (fMRI) data relies on available information about the experimental paradigm to establish hypothesized models of brain activity. However, this information can be inaccurate, incomplete or unavailable in multiple scenarios such as resting-state, naturalistic paradigms or clinical conditions. In these cases, blind estimates of neuronal-related activity can be obtained with paradigm-free analysis methods such as hemodynamic deconvolution. Yet, current formulations of the hemodynamic deconvolution problem have three important limitations: (1) their efficacy strongly depends on the appropriate selection of regularization parameters, (2) being univariate, they do not take advantage of the information present across the brain, and (3) they do not provide any measure of statistical certainty associated with each detected event. Here we propose a novel approach that addresses all these limitations. Specifically, we introduce multivariate sparse paradigm free mapping (Mv-SPFM), a novel hemodynamic deconvolution algorithm that operates at the whole brain level and adds spatial information via a mixed-norm regularization term over all voxels. Additionally, Mv-SPFM employs a stability selection procedure that removes the need to select regularization parameters and also lets us obtain an estimate of the true probability of having a neuronal-related BOLD event at each voxel and time-point based on the area under the curve (AUC) of the stability paths. Besides, we present a formulation tailored for multi-echo fMRI acquisitions (MvME-SPFM), which allows us to better isolate fluctuations of BOLD origin on the basis of their linear dependence with the echo time (TE) and to assign physiologically interpretable units (i.e., changes in the apparent transverse relaxation ΔR2∗) to the resulting deconvolved events. Remarkably, we demonstrate that Mv-SPFM achieves comparable performance even when using a single-echo formulation. We demonstrate that this algorithm outperforms existing state-of-the-art deconvolution approaches, and shows higher spatial and temporal agreement with the activation maps and BOLD signals obtained with a standard model-based linear regression approach, even at the level of individual neuronal events. Furthermore, we show that by employing stability selection, the performance of the algorithm depends less on the selection of temporal and spatial regularization parameters λ and ρ. Consequently, the proposed algorithm provides more reliable estimates of neuronal-related activity, here in terms of ΔR2∗, for the study of the dynamics of brain activity when no information about the timings of the BOLD events is available. This algorithm will be made publicly available as part of the splora Python package.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Algorithms , Hemodynamics
11.
Front Hum Neurosci ; 17: 1134012, 2023.
Article in English | MEDLINE | ID: mdl-37497043

ABSTRACT

Whole-brain functional connectivity (FC) measured with functional MRI (fMRI) evolves over time in meaningful ways at temporal scales going from years (e.g., development) to seconds [e.g., within-scan time-varying FC (tvFC)]. Yet, our ability to explore tvFC is severely constrained by its large dimensionality (several thousands). To overcome this difficulty, researchers often seek to generate low dimensional representations (e.g., 2D and 3D scatter plots) hoping those will retain important aspects of the data (e.g., relationships to behavior and disease progression). Limited prior empirical work suggests that manifold learning techniques (MLTs)-namely those seeking to infer a low dimensional non-linear surface (i.e., the manifold) where most of the data lies-are good candidates for accomplishing this task. Here we explore this possibility in detail. First, we discuss why one should expect tvFC data to lie on a low dimensional manifold. Second, we estimate what is the intrinsic dimension (ID; i.e., minimum number of latent dimensions) of tvFC data manifolds. Third, we describe the inner workings of three state-of-the-art MLTs: Laplacian Eigenmaps (LEs), T-distributed Stochastic Neighbor Embedding (T-SNE), and Uniform Manifold Approximation and Projection (UMAP). For each method, we empirically evaluate its ability to generate neuro-biologically meaningful representations of tvFC data, as well as their robustness against hyper-parameter selection. Our results show that tvFC data has an ID that ranges between 4 and 26, and that ID varies significantly between rest and task states. We also show how all three methods can effectively capture subject identity and task being performed: UMAP and T-SNE can capture these two levels of detail concurrently, but LE could only capture one at a time. We observed substantial variability in embedding quality across MLTs, and within-MLT as a function of hyper-parameter selection. To help alleviate this issue, we provide heuristics that can inform future studies. Finally, we also demonstrate the importance of feature normalization when combining data across subjects and the role that temporal autocorrelation plays in the application of MLTs to tvFC data. Overall, we conclude that while MLTs can be useful to generate summary views of labeled tvFC data, their application to unlabeled data such as resting-state remains challenging.

14.
Life (Basel) ; 13(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240837

ABSTRACT

BACKGROUND: Measurements of tongue force are important in clinical practice during both the diagnostic process and rehabilitation progress. It has been shown that patients with chronic temporomandibular disorders have less tongue strength than asymptomatic subjects. Currently, there are few devices to measure tongue force on the market, with different limitations. That is why a new device has been developed to overcome them. The objectives of the study were to determine the intra- and inter-rater reliability and the responsiveness of a new low-cost device to evaluate tongue force in an asymptomatic population. MATERIALS AND METHODS: Two examiners assessed the maximal tongue force in 26 asymptomatic subjects using a developed prototype of an Arduino device. Each examiner performed a total of eight measurements of tongue force in each subject. Each tongue direction was measured twice (elevation, depression, right lateralization, and left lateralization) in order to test the intrarater reliability. RESULTS: The intrarater reliability using the new device was excellent for the measurements of the tongue force for up (ICC > 0.94), down (ICC > 0.93) and right (ICC > 0.92) movements, and good for the left movement (ICC > 0.82). The SEM and MDC values were below 0.98 and 2.30, respectively, for the intrarater reliability analysis. Regarding the inter-rater reliability, the ICC was excellent for measuring the tongue up movements (ICC = 0.94), and good for all the others (down ICC = 0.83; right ICC = 0.87; and left ICC = 0.81). The SEM and MDC values were below 1.29 and 3.01, respectively, for the inter-rater reliability. CONCLUSIONS: This study showed a good-to-excellent intra- and inter-reliability and good responsiveness in the new device to measure different directions of tongue force in an asymptomatic population. This could be a new, more accessible tool to consider and add to the assessment and treatment of different clinical conditions in which a deficit in tongue force could be found.

15.
Cell Rep ; 42(6): 112527, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37243588

ABSTRACT

Although resting-state functional magnetic resonance imaging (fMRI) studies have observed dynamically changing brain-wide networks of correlated activity, fMRI's dependence on hemodynamic signals makes results challenging to interpret. Meanwhile, emerging techniques for real-time recording of large populations of neurons have revealed compelling fluctuations in neuronal activity across the brain that are obscured by traditional trial averaging. To reconcile these observations, we use wide-field optical mapping to simultaneously record pan-cortical neuronal and hemodynamic activity in awake, spontaneously behaving mice. Some components of observed neuronal activity clearly represent sensory and motor function. However, particularly during quiet rest, strongly fluctuating patterns of activity across diverse brain regions contribute greatly to interregional correlations. Dynamic changes in these correlations coincide with changes in arousal state. Simultaneously acquired hemodynamics depict similar brain-state-dependent correlation shifts. These results support a neural basis for dynamic resting-state fMRI, while highlighting the importance of brain-wide neuronal fluctuations in the study of brain state.


Subject(s)
Brain Mapping , Brain , Animals , Mice , Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging/methods , Neurons/physiology , Hemodynamics , Rest/physiology , Neural Pathways/physiology
16.
Front Neurosci ; 17: 1100544, 2023.
Article in English | MEDLINE | ID: mdl-37090794

ABSTRACT

Designing and executing a good quality control (QC) process is vital to robust and reproducible science and is often taught through hands on training. As FMRI research trends toward studies with larger sample sizes and highly automated processing pipelines, the people who analyze data are often distinct from those who collect and preprocess the data. While there are good reasons for this trend, it also means that important information about how data were acquired, and their quality, may be missed by those working at later stages of these workflows. Similarly, an abundance of publicly available datasets, where people (not always correctly) assume others already validated data quality, makes it easier for trainees to advance in the field without learning how to identify problematic data. This manuscript is designed as an introduction for researchers who are already familiar with fMRI, but who did not get hands on QC training or who want to think more deeply about QC. This could be someone who has analyzed fMRI data but is planning to personally acquire data for the first time, or someone who regularly uses openly shared data and wants to learn how to better assess data quality. We describe why good QC processes are important, explain key priorities and steps for fMRI QC, and as part of the FMRI Open QC Project, we demonstrate some of these steps by using AFNI software and AFNI's QC reports on an openly shared dataset. A good QC process is context dependent and should address whether data have the potential to answer a scientific question, whether any variation in the data has the potential to skew or hide key results, and whether any problems can potentially be addressed through changes in acquisition or data processing. Automated metrics are essential and can often highlight a possible problem, but human interpretation at every stage of a study is vital for understanding causes and potential solutions.

17.
Neuroimage ; 274: 120138, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37116766

ABSTRACT

Most neuroimaging studies display results that represent only a tiny fraction of the collected data. While it is conventional to present "only the significant results" to the reader, here we suggest that this practice has several negative consequences for both reproducibility and understanding. This practice hides away most of the results of the dataset and leads to problems of selection bias and irreproducibility, both of which have been recognized as major issues in neuroimaging studies recently. Opaque, all-or-nothing thresholding, even if well-intentioned, places undue influence on arbitrary filter values, hinders clear communication of scientific results, wastes data, is antithetical to good scientific practice, and leads to conceptual inconsistencies. It is also inconsistent with the properties of the acquired data and the underlying biology being studied. Instead of presenting only a few statistically significant locations and hiding away the remaining results, studies should "highlight" the former while also showing as much as possible of the rest. This is distinct from but complementary to utilizing data sharing repositories: the initial presentation of results has an enormous impact on the interpretation of a study. We present practical examples and extensions of this approach for voxelwise, regionwise and cross-study analyses using publicly available data that was analyzed previously by 70 teams (NARPS; Botvinik-Nezer, et al., 2020), showing that it is possible to balance the goals of displaying a full set of results with providing the reader reasonably concise and "digestible" findings. In particular, the highlighting approach sheds useful light on the kind of variability present among the NARPS teams' results, which is primarily a varied strength of agreement rather than disagreement. Using a meta-analysis built on the informative "highlighting" approach shows this relative agreement, while one using the standard "hiding" approach does not. We describe how this simple but powerful change in practice-focusing on highlighting results, rather than hiding all but the strongest ones-can help address many large concerns within the field, or at least to provide more complete information about them. We include a list of practical suggestions for results reporting to improve reproducibility, cross-study comparisons and meta-analyses.


Subject(s)
Neuroimaging , Humans , Reproducibility of Results , Bias , Selection Bias
20.
bioRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36945636

ABSTRACT

Our ability to recognize faces regardless of viewpoint is a key property of the primate visual system. Traditional theories hold that facial viewpoint is represented by view-selective mechanisms at early visual processing stages and that representations become increasingly tolerant to viewpoint changes in higher-level visual areas. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest an additional intermediate processing stage invariant to mirror-symmetric face views. Consistent with traditional theories, human studies combining neuroimaging and multivariate pattern analysis (MVPA) methods have provided evidence of view-selectivity in early visual cortex. However, contradictory results have been reported in higher-level visual areas concerning the existence in humans of mirror-symmetrically tuned representations. We believe these results reflect low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two popular face databases. Analyses of mean image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across human neuroimaging studies of viewpoint selectivity, we constructed a network model that incorporates three biological constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network layers is sufficient to replicate findings of mirror-symmetry in high-level processing stages, as well as view-tuning in early processing stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the variable observation of mirror-symmetry in late processing stages. The model provides a unifying explanation of MVPA studies of viewpoint selectivity. We also show how common analysis choices can lead to erroneous conclusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...