Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36506349

ABSTRACT

Understanding the roles of evening complex (EC) genes in the circadian clock of plants can inform how diurnal transcriptional loops in the clock gene network function to regulate key physiological and developmental events, including flowering transition. Gene regulatory interactions among soybean's circadian clock and flowering genes were inferred using time-series RNA-seq data and the network inference algorithmic package CausNet. In this study, we seek to clarify the inferred regulatory interactions of the EC gene GmELF3-1. A gene expression analysis using soybean protoplasts as a transient model indicated regulatory roles of GmELF3-1 in expression of selected flowering genes.

2.
Blood ; 138(12): 1034-1039, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34232994

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is an inflammatory disorder in which numerous cytokines are elevated, though interferon-γ (IFN-γ) is central to disease pathogenesis and a key therapeutic target. Experimental and early clinical reports have shown that ruxolitinib, a small molecule inhibitor of Janus kinases (JAKs), which are essential for cytokine signaling, may be therapeutic in HLH. In contrast, we found that intermittently administered ruxolitinib at various dose levels failed to prevent HLH development or treat established murine HLH. High doses of ruxolitinib blocked IFN-γ signaling only transiently after administration, consistent with human pharmacokinetics, and only continuously administered drug could prevent HLH development or treat established HLH. Continuously administered ruxolitinib was therapeutic in only a narrow dose range and intermittently dosed ruxolitinib worsened survival and decreased bone marrow cellularity of animals concurrently treated with anti-IFN-γ antibody, indicating a narrow therapeutic window and potential toxicity. Because JAK2 is essential for hematopoietic cytokine signaling, we also tested a JAK1-selective inhibitor and observed therapeutic benefit without apparent toxicity, though it did not improve survival when combined with anti-IFN-γ. We conclude that continuous blockade of IFN-γ signaling is necessary for optimal control of HLH and that JAK2 inhibition may be toxic in this disorder.


Subject(s)
Interferon-gamma/immunology , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/immunology , Lymphohistiocytosis, Hemophagocytic , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Animals , Disease Models, Animal , Janus Kinase 2/genetics , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/immunology , Mice , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...