Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731632

ABSTRACT

This manuscript details a comprehensive investigation into the synthesis, structural characterization, thermal stability, and optical properties of nickel-containing hybrid perovskites, namely CH3NH3NiCl3, CsNiCl3, and CH3NH3NiBrCl2. The focal point of this study is to unravel the intricate crystal structures, thermal behaviors, and optical characteristics of these materials, thereby elucidating their potential application in energy conversion and storage technologies. X-ray powder diffraction measurements confirm that CH3NH3NiCl3 adopts a crystal structure within the Cmcm space group, while CsNiCl3 is organized in the P63/mmc space group, as reported previously. Such structural diversity underscores the complex nature of these perovskites and their potential for tailored applications. Thermal analysis further reveals the stability of CH3NH3NiCl3 and CH3NH3NiBrCl2, which begin to decompose at 260 °C and 295 °C, respectively. The optical absorption properties of these perovskites studied by UV-VIS-NIR spectroscopy revealed the bands characteristic of Ni2+ ions in an octahedral environment. Notably, these absorption bands exhibit subtle shifts upon bromide substitution, suggesting that optical properties can be finely tuned through halide modification. Such tunability is paramount for the design and development of materials with specific optical requirements. By offering a detailed examination of these properties, the study lays the groundwork for future advancements in material science, particularly in the development of innovative materials for sustainable energy technologies.

2.
ACS Omega ; 9(18): 20129-20134, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737033

ABSTRACT

Lithium carbonate (Li2CO3) is a critical raw material in cathode material production, a core of Li-ion battery manufacturing. The quality of this material significantly influences its market value, with impurities potentially affecting Li-ion battery performance and longevity. While the importance of impurity analysis is acknowledged by suppliers and manufacturers of battery materials, reports on elemental analysis of trace impurities in Li2CO3 salt are scarce. This study aims to establish and validate an analytical methodology for detecting and quantifying trace impurities in Li2CO3 salt. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), were employed to analyze synthetic and processed lithium salt. X-ray diffraction patterns of Li2CO3 were collected via step-scanning mode in the 5-80° 2θ range. SEM-EDX was utilized for particle morphology and quantitative impurity analysis, with samples localized on copper tape. XPS equipped with a hemispherical electron analyzer was employed to analyze the surface composition of the salt. For ICP-OES analysis, a known amount of lithium salt was subjected to acid digestion and dilution with ultrapure water. Multielemental standard solutions were prepared, including elements such as Al, Cd, Cu, Fe, Mn, Ni, Pb, Si, Zn, Ca, K, Mg, Na, and S. Results confirmed the presence of the zabuyelite phase in XRD analysis, corresponding to the natural form of lithium carbonate. SEM-EDX mapping revealed impurities of Si and Al, with low relative quantification values of 0.12% and 0.14%, respectively. XPS identified eight potential impurity elements, including S, Cr, Fe, Cl, F, Zn, Mg, and Na, alongside Li, O, and C. Regarding ICP-OES analysis, performance parameters such as linearity, limit of detection (LOD), and quantification (LOQ), variance, and recovery were evaluated for analytical validation. ICP-OES results demonstrated high linearity (>0.99), with LOD and LOQ values ranging from 0.001 to 0.800 ppm and 0.003 to 1.1 ppm, respectively, for different elements. The recovery rate exceeded 90%. In conclusion, the precision of the new ICP-OES methodology renders it suitable for identifying and characterizing Li2CO3 impurities. It can effectively complement solid-state techniques such as XRD, SEM-EDX, and XPS.

3.
Polymers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675044

ABSTRACT

The addition of nanostructures to polymeric materials allows for a direct interaction between polymeric chains and nanometric structures, resulting in a synergistic process through the physical (electrostatic forces) and chemical properties (bond formation) of constituents for the modification of their properties and potential cutting-edge materials. This study explores a novel in situ synthesis method for PDMS-%SiO2 nanoparticle composites with varying crosslinking degrees (PDMS:TEOS of 15:1, 10:1, and 5:1); particle concentrations (5%, 10%, and 15%); and sol-gel catalysts (acidic and alkaline). This investigation delves into the distinct physical and chemical properties of silicon nanoparticles synthesized under acidic (SiO2-a) and alkaline (SiO2-b) conditions. A characterization through Raman, FT-IR, and XPS analyses confirms particle size and agglomeration differences between both the SiO2-a and SiO2-b particles. Similar chemical environments, with TEOS and ethanol by-products, were detected for both systems. The results on polymer composites elucidate the successful incorporation of SiO2 nanoparticles into the PDMS matrix without altering the PDMS's chemical structure. However, the presence of nanoparticles did affect the relative intensities of specific vibrational modes over composites from -35% to 24% (Raman) and from -14% to 59% (FT-IR). The XPS results validate the presence of Si, O, and C in all composites, with significant variations in atomic proportions (C/Si and O/Si) and Si and C component analyses through deconvolution techniques. This study demonstrates the successful in situ synthesis of PDMS-SiO2 composites with tunable properties by controlling the sol-gel and crosslinking synthesis parameters. The findings provide valuable insights into the in situ synthesis methods of polymeric composite materials and their potential integration with polymer nanocomposite processing techniques.

4.
J Environ Manage ; 351: 119812, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100865

ABSTRACT

Phosphorus (P) is an essential element for life that must be managed sustainably. The institutional framework for P recovery from wastewater includes policies, regulations, plans, and actions that promote the recovery, recycling, and safe use of this element, aimed at moving toward more sustainable nutrient management and environmental protection. This review analyzes the status of the institutional framework for P recovery from wastewater in different countries around the world. Europe is the continent where the most progress has been made in terms of legislation. Countries such as Germany, the Netherlands, Austria, and Denmark have already implemented policies and regulations that promote environmental protection, as well as P recovery and reuse. In other parts of the world, such as the United States, China, and Japan, there have also been significant advances in promoting the closure of the P cycle, with the implementation of advanced recovery technologies in wastewater treatment plants and regional/national action plans. By contrast, in Latin America there has been little progress in P treatment and recovery, with a weak regulatory framework, unclear goals, and insufficient allocation of techno-economic resources. In this context, it is necessary to reinforce the comprehensive institutional framework, which covers technological aspects, economic incentives, political agreements, and regulations, to promote the sustainable management of this valuable resource.


Subject(s)
Phosphorus , Wastewater , Conservation of Natural Resources , Policy , Recycling , Waste Disposal, Fluid
5.
Article in English | MEDLINE | ID: mdl-37791682

ABSTRACT

In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.


Subject(s)
Metals, Rare Earth , Neodymium , Neodymium/chemistry , Magnets , Spectrophotometry, Atomic
6.
Inorg Chem ; 62(42): 17046-17051, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37814970

ABSTRACT

We report the synthesis, characterization, and photoelectric and electrochemical properties of (CH3NH3)2Zn1-xCoxBr4 (x = 0.0, 0.3, 0.5, 0.7, and 1.0) samples. X-ray powder and single-crystal diffraction confirm the formation of solid solution across the entire range. Additionally, as the cobalt concentration increases, the crystallinity of the samples decreases, as indicated by the powder diffraction patterns. All samples remain stable up to 560 K, beyond which they decompose into CH3NH3Br and the respective bromide. The semiconductor behavior of the compounds is confirmed through optical absorption measurements, and band gap values are determined by using the Tauc method from diffuse reflectance spectra. Raman spectroscopy reveals a slight redshift in all vibration modes with increasing cobalt content. Finally, photovoltaic measurements on solar cells constructed with (MA)2CoBr4 perovskite exhibit modest performance, and electrochemical measurements indicate that the compound with the composition (MA)2Zn0.3Co0.7Br4 exhibits the highest current for electrochemical water reduction during oxygen evolution.

7.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242114

ABSTRACT

The use of nanoparticles (NPs) as reinforcements in polymeric coatings allows for direct interaction with the polymeric chains of the matrix, resulting in a synergistic process through physical (electrostatic forces) and chemical interactions (bond formation) for the improvement of the mechanical properties with relatively low weight concentrations of the NPs. In this investigation, different nanocomposite polymers were synthesized from the crosslinking reaction of the hydroxy-terminated polydimethylsiloxane elastomer. Different concentrations (0, 2, 4, 8, and 10 wt%) of TiO2 and SiO2 nanoparticles synthesized by the sol-gel method were added as reinforcing structures. The crystalline and morphological properties of the nanoparticles were determined through X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The molecular structure of coatings was through infrared spectroscopy (IR). The crosslinking, efficiency, hydrophobicity, and adhesion degree of the study groups were evaluated with gravimetric crosslinking tests, contact angle, and adhesion tests. It was observed that the crosslinking efficiency and surface adhesion properties of the different nanocomposites obtained were maintained. A slight increase in the contact angle was observed for the nanocomposites with 8 wt% compared to the polymer without reinforcements. The mechanical tests of indentation hardness and tensile strength following the ASTM E-384 and ISO 527 standards, respectively, were performed. As the nanoparticle concentration increased, a maximum increase of 157% in Vickers hardness, 71.4% in elastic modulus, and 80% in tensile strength was observed. However, the maximum elongation remained between 60 and 75%, ensuring that the composites did not become brittle.

8.
Life Sci ; 326: 121800, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37245841

ABSTRACT

AIMS: Chronic intermittent hypobaric hypoxia (CIHH) exposure due to shift work occurs mainly in 4 × 4 or 7 × 7 days shifts in mining, astronomy, and customs activities, among other institutions. However, the long-lasting effects of CIHH on cardiovascular structure and function are not well characterized. We aimed to investigate the effects of CIHH on the cardiac and vascular response of adult rats simulating high-altitude (4600 m) x low-altitude (760 m) working shifts. MAIN METHODS: We analyzed in vivo cardiac function through echocardiography, ex vivo vascular reactivity by wire myography, and in vitro cardiac morphology by histology and protein expression and immunolocalization by molecular biology and immunohistochemistry techniques in 12 rats, 6 exposed to CIHH in the hypoxic chamber, and respective normobaric normoxic controls (n = 6). KEY FINDINGS: CIHH induced cardiac dysfunction with left and right ventricle remodeling, associated with an increased collagen content in the right ventricle. In addition, CIHH increased HIF-1α levels in both ventricles. These changes are associated with decreased antioxidant capacity in cardiac tissue. Conversely, CIHH decreased contractile capacity with a marked decreased in nitric oxide-dependent vasodilation in both, carotid and femoral arteries. SIGNIFICANCE: These data suggest that CIHH induces cardiac and vascular dysfunction by ventricular remodeling and impaired vascular vasodilator function. Our findings highlight the impact of CIHH in cardiovascular function and the importance of a periodic cardiovascular evaluation in high-altitude workers.


Subject(s)
Altitude , Hypoxia , Rats , Animals , Rats, Sprague-Dawley , Heart , Heart Ventricles/metabolism
9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108713

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Asparaginase/genetics , Asparaginase/therapeutic use , Escherichia coli/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Asparagine , Recombinant Fusion Proteins/therapeutic use , Antineoplastic Agents/therapeutic use
10.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834484

ABSTRACT

Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.


Subject(s)
Guillain-Barre Syndrome , Neuroinflammatory Diseases , Humans , Guillain-Barre Syndrome/pathology , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit , Th17 Cells
11.
3 Biotech ; 12(11): 286, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276451

ABSTRACT

Helicobacter pylori has become the causal agent of multiple forms of gastric disease worldwide, including gastric cancer. The enzyme l-asparaginase (ASNase) has been studied as a virulence factor. In this work, we performed an in silico investigation to characterize the immunological profile of H. pylori ASNase (HpASNase) to ascertain the possible implication of HpASNase immunogenicity in the H. pylori virulence mechanism. We applied a workflow based on bioinformatics tools, which, by calculating the relative frequency of immunogenic T-cell and B-cell epitopes, allowed us to predict the immunogenicity and allergenicity of HpASNase in silico. We also visualized the epitopes by mapping them into the native structure of the enzyme. We report for the first time the T-cell and B-cell epitope composition that contributes to the immunogenicity of this HpASNase, as well as the regions that could generate a hypersensitivity response in humans. ASNase from H. pylori resulted in highly immunogenic and allergenic. The high immunogenicity of HpASNase could imply the pathogenic mechanisms of H. pylori. This knowledge could be important for the development of new drugs against H. pylori infections. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03359-0.

12.
Rev. med. Chile ; 150(10): 1351-1360, oct. 2022. ilus, tab
Article in Spanish | LILACS | ID: biblio-1431851

ABSTRACT

The systemic effects of oxygen deficiency or excess are not thoroughly described. Knowledge is evolving towards the description of beneficial and detrimental effects of both extremes of partial pressure of oxygen (PaO2). The cellular and tissue mediators derived from the modulation of the oxidative tone and the production of reactive oxygen species (ROS) are widely characterized biochemically, but the pathophysiological characterization is lacking. Preclinical models support the use of hypobaric hypoxia preconditioning, based on its beneficial effects on ventricular function or its reduction in infarct size. A very important use of oxygen today is in commercial diving. However, novel clinical indications for oxygen such as the healing of diabetic foot ulcers and bone injury caused by radiotherapy are increasingly used. On the other hand, the modulation of the hypoxic response associated with exposure to high altitude environments (hypobaric), favors Chile and its highlands as a natural laboratory to determine certain cardiovascular, cerebral and metabolic responses in the resident population. Also, the consequences of the intermittent exposure to high altitudes in workers also deserves attention. This review discusses the physiopathological response to hypo and hyperoxemia, associated with environments with different oxygen concentrations, and brings back the concept of oxygen as a pharmacological mediator in extreme environments such as high altitudes and hyperbaric medicine in divers, decompression sickness, osteonecrosis associated with radiotherapy and sudden sensorineural hearing loss.


Subject(s)
Humans , Decompression Sickness/etiology , Diving , Hearing Loss, Sensorineural , Oxygen , Altitude , Hypoxia/complications , Hypoxia/metabolism
13.
Materials (Basel) ; 15(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806844

ABSTRACT

The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hydrothermal method. Glutamic acid was used to control the HAp crystal growth; thereby, nanofibers were obtained with a preferential crystalline orientation, and they were grown along the "c" axis of HAp crystal structures. This morphology exposed the (300) and (100) crystal planes on the surface, and several phosphate groups and calcium ions were also exposed; they were able to form numerous chemical interactions with the amine, hydroxyl, and carbonyl groups of chitosan. Consequently, the final mechanical resistance of the composite materials was synergistically increased. Nanofibers were mixed with commercial chitosan using a sonotrode to improve their dispersion within the biopolymer matrix and prevent migration. The HAp nanofiber/Chitosan composite materials showed higher mechanical resistance than that observed in similar materials with the same chemical composition that were made of commercial HAp powders, which were used as reference materials. The mechanical resistance under tension of the composite materials made of nanofibers was similar to that reported for cortical bone.

14.
Antioxidants (Basel) ; 11(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35739940

ABSTRACT

More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1ß, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.

16.
Rev Med Chil ; 150(10): 1351-1360, 2022 Oct.
Article in Spanish | MEDLINE | ID: mdl-37358094

ABSTRACT

The systemic effects of oxygen deficiency or excess are not thoroughly described. Knowledge is evolving towards the description of beneficial and detrimental effects of both extremes of partial pressure of oxygen (PaO2). The cellular and tissue mediators derived from the modulation of the oxidative tone and the production of reactive oxygen species (ROS) are widely characterized biochemically, but the pathophysiological characterization is lacking. Preclinical models support the use of hypobaric hypoxia preconditioning, based on its beneficial effects on ventricular function or its reduction in infarct size. A very important use of oxygen today is in commercial diving. However, novel clinical indications for oxygen such as the healing of diabetic foot ulcers and bone injury caused by radiotherapy are increasingly used. On the other hand, the modulation of the hypoxic response associated with exposure to high altitude environments (hypobaric), favors Chile and its highlands as a natural laboratory to determine certain cardiovascular, cerebral and metabolic responses in the resident population. Also, the consequences of the intermittent exposure to high altitudes in workers also deserves attention. This review discusses the physiopathological response to hypo and hyperoxemia, associated with environments with different oxygen concentrations, and brings back the concept of oxygen as a pharmacological mediator in extreme environments such as high altitudes and hyperbaric medicine in divers, decompression sickness, osteonecrosis associated with radiotherapy and sudden sensorineural hearing loss.


Subject(s)
Decompression Sickness , Diving , Hearing Loss, Sensorineural , Humans , Oxygen , Decompression Sickness/etiology , Hypoxia/complications , Hypoxia/metabolism , Altitude
17.
Front Physiol ; 12: 705256, 2021.
Article in English | MEDLINE | ID: mdl-34603075

ABSTRACT

Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.

19.
Materials (Basel) ; 14(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804151

ABSTRACT

The energy sector is one of the fields of interest for different nations around the world. Due to the current fossil fuel crisis, the scientific community develops new energy-saving experiences to address this concern. Buildings are one of the elements of higher energy consumption, so the generation of knowledge and technological development may offer solutions to this energy demand, which are more than welcome. Phase change materials (PCMs) included in building elements such as wall panels, blocks, panels or coatings, for heating and cooling applications have been shown, when heating, to increase the heat storage capacity by absorbing heat as latent heat. Therefore, the use of latent heat storage systems using phase change materials (PCMs) has been investigated within the last two decades. In the present review, the macro and micro encapsulation methods for construction materials are reviewed, the former being the most viable method of inclusion of PCMs in construction elements. In addition, based on the analysis of the existing papers on the encapsulation process of PCMs, the importance to pay more attention to the bio-based PCMs is shown, since more research is needed to process such PCMs. To determine its thermophysical and mechanical behavior at the micro and macro levels, in order to see the feasibility of substituting petroleum-based PCMs with a more environmentally friendly bio-based one, a section devoted to the excellent PCM with lightweight aggregate (PCM-LWA concrete) is presented due to the lack of description given in other reviews.

20.
Sci Rep ; 11(1): 7681, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833299

ABSTRACT

The Andean Altiplano-Puna is located at an elevation of approximately 4000 m.a.s.l. and is delineated by the Western and the Eastern Andes Cordillera. The high-altitude wetlands (HAWs) in the Central Andes are unique ecosystems located in the Altiplano that provide many ecosystem services. The objective of this study was to characterize the spatial heterogeneity of the environmental conditions associated with varying hydrology of the HAW, Salar de Tara, in the Andean Altiplano. Sediment samples of up to 20 cm in depth were obtained from various salt flat sub-environments. The samples were analyzed using proxies for mineralogical and chemical composition, thermal analysis, and magnetic susceptibility. Diatom and ostracod communities were also identified and analyzed. The results reflected changes in the geochemistry, carbon content, mineralogy, and magnetic properties of the sediments that can be explained by variations in the sources of water input to the Salar de Tara. The sub-environments depend on the supply of water via the groundwater recharge of springs adjacent to the streamflow from the Zapaleri River, which promotes greater diversity and richness of genera. Our results suggest that water extraction at industrial levels greatly impacts the persistence of hydrologically connected HAWs, which concentrate a worldwide interest in brine mining.

SELECTION OF CITATIONS
SEARCH DETAIL
...