Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 353(1): 132-49, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25650377

ABSTRACT

Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in wild-type mice without observable changes in trabecular and cortical bone architecture. Moreover, significant growth plate widening that translated into accelerated bone growth, at hemodynamically tolerable doses, was observed in juvenile cynomolgus monkeys that had received daily subcutaneous administrations of BMN 111. BMN 111 was well tolerated and represents a promising new approach for treatment of patients with ACH.


Subject(s)
Achondroplasia/drug therapy , Natriuretic Peptide, C-Type/analogs & derivatives , Neprilysin/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Achondroplasia/genetics , Achondroplasia/physiopathology , Animals , Blood Pressure/drug effects , Bone and Bones/drug effects , Bone and Bones/pathology , Bone and Bones/physiopathology , Heart Rate/drug effects , Humans , Injections, Subcutaneous , Macaca fascicularis , Male , Mice , NIH 3T3 Cells , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/therapeutic use , Rats , Recombinant Proteins/metabolism
2.
Am J Respir Cell Mol Biol ; 44(3): 350-60, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20448054

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is caused by exposure to cigarette smoke (CS). One mechanism of CS-induced lung injury is aberrant generation of ceramide, which leads to elevated apoptosis of epithelial and endothelial cells in the alveolar spaces. Recently, we discovered that CS-induced ceramide generation and apoptosis in pulmonary cells is governed by neutral sphingomyelinase (nSMase) 2. In the current experiments, we expanded our studies to investigate whether nSMase2 governs ceramide generation and apoptosis in vivo using rodent and human models of CS-induced lung injury. We found that exposure of mice or rats to CS leads to colocalizing elevations of ceramide levels and terminal deoxynucleotidyl transferase mediated X-dUTP nick end labeling-positive cells in lung tissues. These increases are nSMase2 dependent, and are abrogated by treatment with N-acetyl cysteine or anti-nSMase2 small interfering RNA (siRNA). We further showed that mice that are heterozygous for nSMase2 demonstrate significant decrease in ceramide generation after CS exposure, whereas acidic sphingomyelinase (aSMase) knockout mice maintain wild-type ceramide levels, confirming our previous findings (in human airway epithelial cells) that only nSMase2, and not aSMase, is activated by CS exposure. Lastly, we found that lung tissues from patients with emphysema (smokers) display significantly higher levels of nSMase2 expression compared with lung tissues from healthy control subjects. Taken together, these data establish the central in vivo role of nSMase2 in ceramide generation, aberrant apoptosis, and lung injury under CS exposure, underscoring its promise as a novel target for the prevention of CS-induced airspace destruction.


Subject(s)
Apoptosis , Disease Models, Animal , Lung Injury/chemically induced , Lung/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/adverse effects , Sphingomyelin Phosphodiesterase/metabolism , Animals , Female , Humans , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Small Interfering/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...