Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Eur Radiol ; 30(12): 6582-6592, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32594208

ABSTRACT

OBJECTIVES: To develop an automatic method for identification and segmentation of clinically significant prostate cancer in low-risk patients and to evaluate the performance in a routine clinical setting. METHODS: A consecutive cohort (n = 292) from a prospective database of low-risk patients eligible for the active surveillance was selected. A 3-T multi-parametric MRI at 3 months after inclusion was performed. Histopathology from biopsies was used as reference standard. MRI positivity was defined as PI-RADS score ≥ 3, histopathology positivity was defined as ISUP grade ≥ 2. The selected cohort contained four patient groups: (1) MRI-positive targeted biopsy-positive (n = 116), (2) MRI-negative systematic biopsy-negative (n = 55), (3) MRI-positive targeted biopsy-negative (n = 113), (4) MRI-negative systematic biopsy-positive (n = 8). Group 1 was further divided into three sets and a 3D convolutional neural network was trained using different combinations of these sets. Two MRI sequences (T2w, b = 800 DWI) and the ADC map were used as separate input channels for the model. After training, the model was evaluated on the remaining group 1 patients together with the patients of groups 2 and 3 to identify and segment clinically significant prostate cancer. RESULTS: The average sensitivity achieved was 82-92% at an average specificity of 43-76% with an area under the curve (AUC) of 0.65 to 0.89 for different lesion volumes ranging from > 0.03 to > 0.5 cc. CONCLUSIONS: The proposed deep learning computer-aided method yields promising results in identification and segmentation of clinically significant prostate cancer and in confirming low-risk cancer (ISUP grade ≤ 1) in patients on active surveillance. KEY POINTS: • Clinically significant prostate cancer identification and segmentation on multi-parametric MRI is feasible in low-risk patients using a deep neural network. • The deep neural network for significant prostate cancer localization performs better for lesions with larger volumes sizes (> 0.5 cc) as compared to small lesions (> 0.03 cc). • For the evaluation of automatic prostate cancer segmentation methods in the active surveillance cohort, the large discordance group (MRI positive, targeted biopsy negative) should be included.


Subject(s)
Image Processing, Computer-Assisted/methods , Multiparametric Magnetic Resonance Imaging , Pattern Recognition, Automated , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Aged , Algorithms , Area Under Curve , Biopsy , Cohort Studies , Deep Learning , Humans , Male , Middle Aged , Neural Networks, Computer , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL