Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 22(1): 94, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29655372

ABSTRACT

BACKGROUND: Dosing in obese critically ill patients is challenging due to pathophysiological changes derived from obesity and/or critical illness, and it remains fully unexplored. This study estimated the micafungin probability of reaching adequate 24-h area under the curve (AUC0-24h)/minimum inhibitory concentration (MIC) values against Candida spp. for an obese/nonobese, critically ill/noncritically ill, large population. METHODS: Blood samples for pharmacokinetic analyses were collected from 10 critically ill nonobese patients, 10 noncritically ill obese patients, and 11 critically ill morbidly obese patients under empirical/directed micafungin treatment. Patients received once daily 100-150 mg micafungin at the discretion of the treating physician following the prescribing information and hospital guidelines. Total micafungin concentrations were determined by high-performance liquid chromatography (HPLC). Monte-Carlo simulations were performed and the probability of target attainment (PTA) was calculated using the AUC0-24/MIC cut-offs 285 (C. parapsilosis), 3000 (all Candida spp.), and 5000 (nonparapsilosis Candida spp.). Intravenous once-daily 100-mg, 150-mg, and 200-mg doses were simulated at different body weights (45, 80, 115, 150, and 185 kg) and age (30, 50, 70 and 90 years old). PTAs ≥ 90% were considered optimal. Fractional target attainment (FTA) was calculated using published MIC distributions. A dosing regimen was considered successful if the FTA was ≥ 90%. RESULTS: Overall, 100 mg of micafungin was once-daily administered for nonobese and obese patients with body mass index (BMI) ≤ 45 kg/m2 and 150 mg for morbidly obese patients with BMI > 45 kg/m2 (except two noncritically ill obese patients with BMI ~ 35 kg/m2 receiving 150 mg, and one critically ill patient with BMI > 45 kg/m2 receiving 100 mg). Micafungin concentrations in plasma were best described using a two-compartment model. Weight and age (but not severity score) were significant covariates and improved the model. FTAs > 90% were obtained against C. albicans with the 200 mg/24 h dose for all body weights (up to 185 kg), and with the 150 mg/24 h for body weights < 115 kg, and against C. glabrata with the 200 mg/24 h dose for body weights < 115 kg. CONCLUSION: The lack of adequacy for the 100 mg/24 h dose suggested the need to increase the dose to 150 mg/24 h for C. albicans infections. Further pharmacokinetic/pharmacodynamic studies should address optimization of micafungin dosing for nonalbicans Candida infections.


Subject(s)
Candidiasis/drug therapy , Dose-Response Relationship, Drug , Echinocandins/pharmacology , Echinocandins/pharmacokinetics , Lipopeptides/pharmacology , Lipopeptides/pharmacokinetics , Obesity, Morbid/physiopathology , Obesity/physiopathology , Adult , Aged , Aged, 80 and over , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Area Under Curve , Body Mass Index , Critical Illness/therapy , Echinocandins/therapeutic use , Female , Humans , Lipopeptides/therapeutic use , Male , Micafungin , Microbial Sensitivity Tests , Middle Aged , Monte Carlo Method , ROC Curve , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...