Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 233: 116360, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37295584

ABSTRACT

Antibiotic consumption at high levels in both human and veterinary populations pose a risk to their eventual entry into the food chain and/or water bodies, which will adversely affect the health of living organisms. In this work, three materials from forestry and agro-food industries (pine bark, oak ash and mussel shell) were investigated as regards their potential use as bio-adsorbents in the retention of the antibiotics amoxicillin (AMX), ciprofloxacin (CIP) and trimethoprim (TMP). Batch adsorption/desorption tests were conducted, adding increasing concentrations of the pharmaceuticals individually (from 25 to 600 µmol L-1), reaching maximum adsorption capacities of ≈ 12000 µmol kg-1 for the three antibiotics, with removal percentages of ≈ 100% for CIP, 98-99% adsorption for TMP onto pine bark, and 98-100% adsorption for AMX onto oak ash. The presence of high calcium contents and alkaline conditions in the ash favored the formation of cationic bridges with AMX, whereas the predominance of hydrogen bonds between pine bark and TMP and CIP functional groups explain the strong affinity and retention of these antibiotics. The Freundlich's model provided the best prediction for AMX adsorption onto oak ash and mussel shell (heterogeneous adsorption), whereas the Langmuir's model described well AMX adsorption onto pine bark, as well as CIP adsorption onto oak ash (homogeneous and monolayer adsorption), while all three models provided satisfactory results for TMP. In the present study, the results obtained were crucial in terms of valorization of these adsorbents and their subsequent use to improve the retention of antibiotics of emerging concern in soils, thereby preventing contamination of waters and preserving environment quality.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Forestry , Adsorption , Amoxicillin , Ciprofloxacin
2.
J Environ Manage ; 338: 117830, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37004486

ABSTRACT

Algae play an extremely important ecological role. They form the basis of trophic webs, produce oxygen that allows the respiration of many of the organisms in aquatic environments, absorb CO2, and serve as refuge areas and habitats for thousands of species. Many species can also absorb organic pollutants from seawater. Algae have been used for many centuries by humans as a source of food, fertilizer, fodder, and for the extraction of compounds with antifungal, antiviral, anticancer, and antibacterial properties. More recently, some species have been used for the production of biofuels. It has been shown that mixing small proportions of algae with the feed of cattle can reduce methane emissions from their digestive activity by more than 95%. One of the most widespread but least known applications of algae is the extraction of their phycocolloids for utilization in food, pharmaceutical, wine, and textile industries, among others. These compounds have gelling, stabilizing, and thickening properties and are therefore frequently included in creams, ice creams, cheeses, jellies, flavored milks, sauces, shampoos, medications, toothpaste, and many other products. The phycocolloids agar and carrageenan are extracted from red algae, whereas alginate is extracted from brown algae, being used in dental impressions, emulsifying lotions, and paints, among others, and in the preparation of wine and beer. Algae are of particular interest in the research and development of new biosorbent materials, not only because of their high adsorption capacity, but also because they are present in the seas and oceans in abundant and easily accessible quantities. Marine algae are a promising biosorbent for the removal of heavy metals and various pollutants and, due to their intrinsic characteristics, have received increasing attention in recent decades. Their application as biosorbents for the sorption of heavy metals and radionuclides could be interpreted as the use of waste to remove waste. Algae have attracted particular interest in the field of biotechnology for economic reasons, given that large amounts are naturally produced and left lying on beaches as waste material. The composition of algae biomass makes it a promising candidate for an extensive list of applications that continues to lengthen. The development of appropriate technologies and policies can transform the presence of algae in coastal ecosystems from an unpleasant and potentially harmful phenomenon into a source of major benefits. This review discusses the capacity of algae biomass to remove pollutants and also delves into its applicability in the production of dyes, oils, and biofuels and for animal feed and fertilizer industries, among others. Further research is warranted on strategies to convert a biomass that is currently considered waste into a means of addressing environmental problems.


Subject(s)
Environmental Pollutants , Metals, Heavy , Humans , Animals , Cattle , Biomass , Ecosystem , Biofuels , Fertilizers
3.
Article in English | MEDLINE | ID: mdl-36767922

ABSTRACT

Sargassum algae has become a major environmental issue due to its abundance in the Pacific Ocean with hundreds of tons reaching the beaches of the Mexican Caribbean every year. This generates large quantities of decomposing organic matter that have a negative impact on the region's economy and ecosystems. Sargassum valorization has turned out to be a fundamental aspect to mitigate its environmental impact. This study proposes the use and application of untreated Sargassum biomass for the decontamination of waters polluted with lead (Pb) and cadmium (Cd) through single and binary adsorption tests. Physicochemical and textural properties examined by SEM, XRD, and FT-IR elucidated that Sargassum biomass is viable to be used as a potential environmental benign adsorbent, exhibiting Cd(II) and Pb(II) adsorption capacities as high as 240 mg g-1 and 350 mg g-1, respectively, outperforming conventionally used adsorbents. This is attributed to its morphology, favorable surface charge distribution, and the presence of -OH and -COH groups. A strong affinity between the biomass and metal pollutants was evidenced by a thermodynamics study, showing a spontaneous and endothermic process. This work sets a practical route for the utilization of the Sargassum biomass, demonstrating its applicability as a potential material for heavy-metal-polluted water remediation, making a substantial contribution to a circular economy system.


Subject(s)
Metals, Heavy , Sargassum , Water Pollutants, Chemical , Cadmium , Biomass , Ecosystem , Spectroscopy, Fourier Transform Infrared , Lead , Metals, Heavy/chemistry , Adsorption , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...