Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
3.
Int J Parasitol ; 43(14): 1119-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24162075

ABSTRACT

Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the host species representing the more recent host-parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds.


Subject(s)
Ancylostomatoidea/classification , Ancylostomatoidea/isolation & purification , Caniformia/parasitology , Phylogeography , Ancylostomatoidea/anatomy & histology , Ancylostomatoidea/genetics , Animals , Biometry , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Male , Molecular Sequence Data , Sequence Analysis, DNA
4.
Proc Biol Sci ; 276(1672): 3523-9, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19605394

ABSTRACT

Hookworms are intestinal blood-feeding nematodes that parasitize and cause high levels of mortality in a wide range of mammals, including otariid pinnipeds. Recently, an empirical study showed that inbreeding (assessed by individual measures of multi-locus heterozygosity) is associated with hookworm-related mortality of California sea lions. If inbreeding increases susceptibility to hookworms, effects would expectedly be stronger in small, fragmented populations. We tested this assumption in the New Zealand sea lion, a threatened otariid that has low levels of genetic variability and high hookworm infection rates. Using a panel of 22 microsatellites, we found that average allelic diversity (5.9) and mean heterozygosity (0.72) were higher than expected for a small population with restricted breeding, and we found no evidence of an association between genetic variability and hookworm resistance. However, similar to what was observed for the California sea lion, homozygosity at a single locus explained the occurrence of anaemia and thrombocytopenia in hookworm-infected pups (generalized linear model, F = 11.81, p < 0.001) and the effect was apparently driven by a particular allele (odds ratio = 34.95%; CI: 7.12-162.41; p < 0.00001). Our study offers further evidence that these haematophagus parasites exert selective pressure on otariid blood-clotting processes.


Subject(s)
Anemia/veterinary , Genetic Predisposition to Disease , Genetic Variation , Hookworm Infections/veterinary , Sea Lions , Anemia/genetics , Animals , Hookworm Infections/genetics , Microsatellite Repeats , New Zealand
5.
Vet Microbiol ; 122(1-2): 178-84, 2007 May 16.
Article in English | MEDLINE | ID: mdl-17250977

ABSTRACT

The 2001/2002 and 2002/2003 breeding seasons of New Zealand sea lions (NZSLs) on the Auckland Islands were marked by a high pup mortality caused by acute bacterial infections. As part of a health survey from 1998/1999 to 2004/2005, tissues and swabs of lesions had been collected at necropsy to identify the bacteria associated with pup mortality. Klebsiella pneumoniae was grown in pure culture from 83% of various organs and lesions in 2001/2002 and 76% in 2002/2003, and less frequently in the following seasons (56% in 2003/2004 and 49% in 2004/2005). Pup isolates of K. pneumoniae showed identical minimal inhibitory concentrations (MIC) of cefuroxime, neomycin, cephalotin, cephalexin and dihydrostreptomycin, suggesting clonal aetiology of the pathogen. Isolates also tested negative for production of extended-spectrum beta-lactamases (ESBLs), which was not in favour of an anthropogenetic origin of the epidemic strain. Pulsed-field gel electrophoresis (PFGE) of XbaI DNA macrorestriction fragments was performed on isolates of K. pneumoniae and Klebsiella oxytoca from 35 pups, thee NZSL adult females, and from three human patients for comparison. PFGE showed that pup isolates of K. pneumoniae were genetically indistinguishable but were neither related to K. pneumoniae from humans and from NZSL adults, nor to K. oxytoca from NZSLs. It is concluded that the 2001/2002 and 2002/2003 epidemics at Sandy Bay rookery were caused by a single K. pneumoniae clonal lineage, genetically different from the strain carried by adult NZSLs. An anthropogenic origin of the K. pneumoniae clone could not be confirmed, but further investigations are required to rule-out such occurrence.


Subject(s)
Animal Diseases/microbiology , Disease Outbreaks/veterinary , Klebsiella Infections/veterinary , Klebsiella pneumoniae/genetics , Sea Lions/microbiology , Animal Diseases/epidemiology , Animals , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , New Zealand/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...