Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(7)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244703

ABSTRACT

The structural, thermal, electrical and mechanical properties of fully dense B4C ceramics, sintered using Spark Plasma Sintering (SPS), were studied and compared to the properties of B4C ceramics previously published in the literature. New results on B4C's mechanical responses were obtained by nanoindentation and ring-on-ring biaxial strength testing. The findings contribute to a more complete knowledge of the properties of B4C ceramics, an important material in many industrial applications.

2.
Sci Rep ; 9(1): 10200, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31308491

ABSTRACT

Bulk polycrystalline high-entropy carbides are a newly developed group of materials that increase the limited compositional space of ultra-high temperature ceramics, which can withstand extreme environments exceeding 2000 °C in oxidizing atmospheres. Since the deformability of grains plays an important role in macromechanical performance, in this work we studied the strength and slip behaviour of grains of a spark-plasma sintered (Hf-Ta-Zr-Nb)C high-entropy carbide in a specific orientation during micropillar compression. For comparison, identical measurements were carried out on the monocarbides HfC and TaC. It was revealed that (Hf-Ta-Zr-Nb)C had a significantly enhanced yield and failure strength compared to the corresponding base monocarbides, while maintaining a similar ductility to the least brittle monocarbide (TaC) during the operation of [Formula: see text] slip systems. Additionally, it was concluded that the crystal orientation and stress conditions determine the operation of slip systems in mono- and high-entropy carbides at room temperature.

3.
Sci Rep ; 8(1): 8609, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872126

ABSTRACT

Bulk equiatomic (Hf-Ta-Zr-Ti)C and (Hf-Ta-Zr-Nb)C high entropy Ultra-High Temperature Ceramic (UHTC) carbide compositions were fabricated by ball milling and Spark Plasma Sintering (SPS). It was found that the lattice parameter mismatch of the component monocarbides is a key factor for predicting single phase solid solution formation. The processing route was further optimised for the (Hf-Ta-Zr-Nb)C composition to produce a high purity, single phase, homogeneous, bulk high entropy material (99% density); revealing a vast new compositional space for the exploration of new UHTCs. One sample was observed to chemically decompose; indicating the presence of a miscibility gap. While this suggests the system is not thermodynamically stable to room temperature, it does reveal further potential for the development of new in situ formed UHTC nanocomposites. The optimised material was subjected to nanoindentation testing and directly compared to the constituent mono/binary carbides, revealing a significantly enhanced hardness (36.1 ± 1.6 GPa,) compared to the hardest monocarbide (HfC, 31.5 ± 1.3 GPa) and the binary (Hf-Ta)C (32.9 ± 1.8 GPa).

4.
Sci Rep ; 7(1): 11134, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894237

ABSTRACT

ABSTARCT: In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd30.0Fe61.8Co5.8Ga0.6Al0.1B0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m-1) and matched remanence (1.16 T) giving a BHmax of 230 kJ m-3.

SELECTION OF CITATIONS
SEARCH DETAIL
...