Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res (Hoboken) ; 47(7): 1297-1311, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37128647

ABSTRACT

BACKGROUND: Mechanisms by which alcohol increases the risk of esophageal squamous cell carcinoma remain undefined. Human esophageal myofibroblasts (HEMFs) subjacent to the squamous epithelium are exposed directly to these agents via epithelial barrier defects and indirectly via factors derived from the exposed epithelium. Our aim was to investigate the cellular biology of HEMFs and HEMF-esophageal epithelial cell interactions in response to alcohol and its toxic metabolite acetaldehyde. METHODS: An immortalized HEMF and a human esophageal epithelial cell line (Epi) were treated with alcohol (0 to 200 mM) or acetaldehyde (0 to 100 µM) in a cyclic fashion or incubated with supernatants collected from treated cells. Healthy cell %, reactive oxygen species (ROS), and proliferation were assessed via flow cytometry, luminescence, scratch wound, and colorimetric assays, respectively. A 15-plex multiplex assay was performed on cell supernatants, followed by IL-6 and IL-8 qRT-PCR and ELISA. RESULTS: Healthy HEMF decreased to less than 80% at 30 mM alcohol and 70 µM acetaldehyde, with microscopic changes at 40 µM acetaldehyde. HEMF ROS was detected at 100 mM alcohol and 80 µM acetaldehyde. Supernatants from 30 mM alcohol- or 40 µM acetaldehyde-treated HEMFs increased Epi proliferation more than two-fold that of lower doses. In the complementary studies, healthy Epi cells decreased to less than 80% at 50 mM and 70 µM acetaldehyde, with microscopic changes at 40 µM. Supernatants from Epi treated with 50 mM alcohol or 40 µM acetaldehyde increased HEMF proliferation more than two-fold that of lower doses. A multiplex assay of supernatants showed the greatest increase in concentrations of IL-6 and IL-8 in HEMFs and in Epi treated with higher doses of alcohol or acetaldehyde. Neutralization of IL-6 and IL-8 in supernatants of HEMFS and esophageal epithelial cells inhibited the proliferation of Epi and HEMFs, respectively. CONCLUSIONS: Alcohol and acetaldehyde doses in which the majority of HEMFs and epithelial cells are healthy, elicit the production of paracrine mediators with pro-proliferative effects on neighboring cells. Understanding the effect of alcohol and acetaldehyde on HEMFs and HEMF-epithelial interactions could help to identify the molecular basis by which alcohol increases the risk for esophageal cancer.

2.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142285

ABSTRACT

Subepithelial human esophageal myofibroblasts (HEMFs) in gastroesophageal reflux disease (GERD) are exposed to luminal contents via impaired squamous epithelium barrier integrity. The supernatant of HEMFs treated with acidic bile salts reflective of in vivo reflux increases squamous epithelial thickness. We aimed to identify the involved mechanisms using an unbiased approach. Acidic-bile-salt-treated primary HEMF cultures (n = 4) were submitted for RNA-Seq and analyzed with Partek Flow followed by Ingenuity Pathway Analysis (IPA). A total of 1165 molecules (579 downregulated, 586 upregulated) were differentially expressed, with most top regulated molecules either extracellular or in the plasma membrane. Increases in HEMF CXCL-8, IL-6, AREG, and EREG mRNA, and protein secretion were confirmed. Top identified canonical pathways were agranulocyte and granulocyte adhesion and diapedesis, PI3K/AKT signaling, CCR5 signaling in macrophages, and the STAT3 pathway. Top diseases and biological functions were cellular growth and development, hematopoiesis, immune cell trafficking, and cell-mediated response. The targets of the top upstream regulator ErbB2 included CXCL-8, IL-6, and AREG and the inhibition of CXCL-8 in the HEMF supernatant decreased squamous epithelial proliferation. Our work shows an inflammatory/immune cell and proliferative pathways activation in HEMFs in the GERD environment and identifies CXCL-8 as a HEMF-derived chemokine with paracrine proliferative effects on squamous epithelium.


Subject(s)
Carcinoma, Squamous Cell , Gastroesophageal Reflux , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Carcinoma, Squamous Cell/metabolism , Humans , Interleukin-6/metabolism , Myofibroblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...