Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Infect Genet Evol ; 78: 104104, 2020 03.
Article in English | MEDLINE | ID: mdl-31698114

ABSTRACT

Cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide. It is known as a species complex consisting of at least 40 cryptic species. Although there are substantial data regarding species composition, parasitoids and endosymbionts of B. tabaci, data on relationship between the pest, parasitoids and endosymbionts are very restricted. Therefore, in this study, secondary endosymbionts in populations of B. tabaci and their parasitoids collected from Turkey and the USA were determined by PCR-based DNA analysis. Whitefly populations in Turkey represented both Mediterranean (MED) and Middle East-Asia Minor1 (MEAM1) genotypes from single or mixed populations of both genotypes. Arsenophonus, Rickettsia and Wolbachia were found in MED, while Hamiltonella and Rickettsia in MEAM1. Whitefly populations collected from Arizona were all MEAM1 and dually infected with Hamiltonella and Rickettsia. The aphelinid parasitoids Encarsia lutea and Eretmocerus mundus predominated in all Turkish populations. While almost all En. lutea populations were infected with Wolbachia, no endosymbionts were detected in any Er. mundus. Parasitoid species and the pattern of secondary endosymbiont infection in Arizona populations were different with Rickettsia detected only from Encarsia sophia while both Rickettsia and Wolbachia were found in Eretmocerus species. As a result, four secondary endosymbionts, namely, Rickettsia, Hamiltonella, Arsenophonus and Wolbachia, were detected from B.tabaci and its parasitoids. Among them only Wolbachia and Rickettsia were found in both the pest and parasitoids. It is conclude that further studies should be pursued to determine effect of these endosymbionts on biology of the parasitoids and success in biological control of B. tabaci.


Subject(s)
Bacteria/classification , Genotyping Techniques/methods , Hemiptera/classification , Hemiptera/microbiology , Animals , Arizona , Bacteria/genetics , Bacteria/isolation & purification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Hemiptera/genetics , Mediterranean Region , Phylogeography , Rickettsia/genetics , Rickettsia/isolation & purification , Species Specificity , Symbiosis , Turkey , Wolbachia/genetics , Wolbachia/isolation & purification
2.
J Econ Entomol ; 111(5): 2340-2348, 2018 09 26.
Article in English | MEDLINE | ID: mdl-29982564

ABSTRACT

Pest management for the glassy-winged sharpshooter, Homalodisca vitripennis Germar (Hemiptera: Cicadellidae), in Kern County, California relies on the application of insecticides. These treatments have contributed to low H. vitripennis field counts since applications were initiated in 2001. However, densities have been high in recent years despite continued management, prompting efforts to evaluate the susceptibility of current populations to insecticides. H. vitripennis adults were subjected to bioassays with five commonly applied insecticides, and the results were compared to baseline toxicities determined in 2002. Two neonicotinoids, imidacloprid and thiamethoxam, were evaluated using systemic uptake bioassays. Contact toxicities of the neonicotinoid acetamiprid and pyrethroids bifenthrin and fenpropathrin were estimated using leaf dip bioassays. Dose-mortality responses were analyzed by probit analysis. For each compound, there was no significant difference in annual LC50 values determined over 2 yr. Compared to baseline toxicities, acetamiprid and bifenthrin were found to be significantly less toxic to H. vitripennis. The LC50 values of these two compounds increased sevenfold and 152-fold, respectively. Tests with the neonicotinoids revealed a trend of decreasing susceptibility levels within each season followed by reversion back to early season LC50 estimates in the following year. In addition, data showed seasonal and site variation in susceptibility to imidacloprid, possibly due to differential applications in nearby fields.


Subject(s)
Hemiptera , Insecticide Resistance , Insecticides , Animals
3.
J Econ Entomol ; 108(2): 672-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470178

ABSTRACT

Field-collected nymphs and adults of Bagrada hilaris (Burmeister) (Hemiptera: Penatatomidae) from three locations were evaluated for susceptibility to insecticides representing 10 classes of insecticide chemistry. Although relative susceptibilities differed between leaf-spray and leaf-dip Petri dish bioassays, consistently low LC50 values were determined for chlorpyrifos, bifenthrin, and lambda-cyhalothrin. Fenpropathrin and methomyl had intermediate values. Susceptibility to dinotefuran varied depending on the bioassay, possibly owing to leaf substrates used in the two bioassays. In soil systemic bioassays, the LC50 value of dinotefuran was significantly greater than that of two other neonicotinoids, imidacloprid and thiamethoxam, and the anthranilic diamide, cyantraniliprole. Mortality and feeding damage of B. hilaris and plant growth on insecticide-treated plants in greenhouse trials were consistent with the laboratory bioassays; the best results were seen with bifenthrin, methomyl, and chlorpyrifos. Mortality to the neonicotinoids was not evident; however, feeding damage and plant growth responses on dinotefuran-treated plants damage were similar to the noninfested control. This highlights the apparent antifeedant properties of dinotefuran that may have prevented adults from injuring broccoli plants after exposure to foliar spray residues. Data presented serve as baseline susceptibilities that can be used to monitor for resistance development in field populations of B. hilaris.


Subject(s)
Heteroptera , Insecticides , Animals , Brassica , Toxicity Tests
4.
Pest Manag Sci ; 70(10): 1538-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24375968

ABSTRACT

BACKGROUND: Bemisia tabaci biotype B is a resistance-prone pest of protected and open agriculture. Systemic uptake bioassays used in resistance monitoring programs have provided important information on susceptibility to neonicotinoid insecticides, but have remained decoupled from field performance. Simultaneous bioassays conducted in field and laboratory settings were compared and related to concentrations of imidacloprid in plant tissue for clearer interpretation of resistance monitoring data. RESULTS: Mean mortalities of adult whiteflies confined on cantaloupe leaves field-treated with three rates of imidacloprid did not exceed 40% in two trials. In contrast, laboratory bioassays conducted on different subsets of the same whitefly populations yielded concentration-response curves suggestive of susceptibility to imidacloprid in five populations (LC50 values from 1.02 to 6.4) relative to a sixth population (LC50 = 13.8). In the field, densities of eggs and nymphs were significantly lower on the imidacloprid-treated cantaloupes compared with the untreated control, but the margin of control was greater in 2006 than in 2007. The potential impact of imidacloprid on whitefly eggs was explored in a greenhouse test that showed egg mortality occurring in both early (one-day-old) and late (three-day-old) eggs on cotton leaves systemically treated with imidacloprid. Quantification of imidacloprid residues in cotton leaves used routinely in systemic uptake bioassays revealed concentrations that greatly exceeded concentrations found in the field-treated cantaloupe leaves, at least at the three highest solution concentrations used for uptake. CONCLUSION: Systemic uptake bioassays have been widely used for monitoring B. tabaci resistance to imidacloprid, but without knowledge of imidacloprid concentrations that occur in test leaves relative to field concentrations. Higher mortality observed in systemic uptake bioassays relative to field-treated cantaloupes in this study suggests that field rates of imidacloprid are only partially effective against B. tabaci adults, in contrast to systemic uptake bioassays that showed susceptibility to imidacloprid. The discrepancy between field- and laboratory-based mortalities is probably due to extraordinarily high concentrations of imidacloprid that can occur in leaves of systemic uptake bioassays, potentially skewing perception of susceptibility to imidacloprid. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Biological Assay/methods , Hemiptera/drug effects , Imidazoles/pharmacology , Insecticides/pharmacology , Nitro Compounds/pharmacology , Animals , Cucumis melo/parasitology , Gossypium/parasitology , Insecticide Resistance , Neonicotinoids , Nymph/drug effects , Ovum/drug effects
5.
J Econ Entomol ; 105(4): 1392-400, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928321

ABSTRACT

Between 2006 and 2008, 20 populations of Planococcus ficus (Signoret), from Coachella and San Joaquin Valleys of California were measured in the laboratory for susceptibility to buprofezin, chlorpyrifos, dimethoate, methomyl, and imidacloprid. Toxicity was assessed using a petri dish bioassay technique for contact insecticides and by a systemic uptake technique for imidacloprid. Mixed life stages were tested for susceptibility to all insecticides except for buprofezin, which was measured against early and late instars (first, second, and third). Dose-response regression lines from the mortality data established LC50 and LC99 values by both techniques. Responses of populations from the two geographical locations to all five insecticides varied, in some cases significantly. Variations in susceptibility to each insecticide among sample sites showed a sevenfold difference for buprofezin, 11-fold to chlorpyrifos, ninefold to dimethoate, 24-fold to methomyl, and 8.5-fold to imidacloprid. In spite of susceptibility differences between populations, baseline toxicity data revealed that all five insecticides were quite effective based on low LC50s. Chlorpyrifos was the most toxic compound to Planococcus ficus populations as shown by lowest LC50s. Buprofezin was toxic to all immature stages but was more potent to first instars. The highest LC99 estimated by probit analysis of the bioassay data of all 20 populations for each compound was selected as a candidate discriminating dose for use in future resistance monitoring efforts. Establishment of baseline data and development of resistance monitoring tools such as bioassay methods and discriminating doses are essential elements of a sustainable management program for Planococcus ficus.


Subject(s)
Hemiptera , Insecticides , Animals , California , Dimethoate , Imidazoles , Methomyl , Neonicotinoids , Nitro Compounds , Thiadiazines , Vitis/parasitology
6.
J Econ Entomol ; 105(1): 67-71, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22420257

ABSTRACT

ELISA techniques were used to detect imidacloprid in guttation fluid of young cantaloupe plants in Arizona. Imidacloprid was detected at up to 4.1 microg/ml (ppm) in a coincidental guttation collection 3 d after a top label rate soil application and at 37 microg/ml one d after a separate top label rate soil application study. These imidacloprid titers exceed reported median oral toxicities for several insect species by factors of 10 or more. Pesticides in guttation fluid are a relatively unexplored route of exposure for both pest and beneficial insects, and could represent an important risk for both of these groups in guttation-prone environments.


Subject(s)
Cucumis melo/metabolism , Environmental Exposure , Enzyme-Linked Immunosorbent Assay/methods , Imidazoles/toxicity , Insecta/drug effects , Insecticides/toxicity , Nitro Compounds/toxicity , Pesticide Residues/toxicity , Animals , Arizona , Biological Control Agents , Cucumis melo/chemistry , Imidazoles/metabolism , Insecticides/metabolism , Neonicotinoids , Nitro Compounds/metabolism , Pesticide Residues/metabolism , Plant Transpiration , Risk Factors , Sensitivity and Specificity , Species Specificity
7.
J Econ Entomol ; 104(3): 773-81, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21735893

ABSTRACT

Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of several insect pests in cotton (Gossypium spp.), vegetables, and citrus (Citrus spp.). We evaluated their impact on six species of beneficial arthropods, including four parasitoid species--Aphytis melinus Debach, Gonatocerus ashmeadi Girault, Eretmocerus eremicus Rose & Zolnerowich, and Encarsia formosa Gahan--and two generalist predators--Geocoris punctipes (Say) and Orius insidiosus (Say)--in the laboratory by using a systemic uptake bioassay. Exposure to systemically treated leaves of both neonicotinoids had negative effects on adult survival in all four parasitoids, with higher potency against A. melinus as indicated by a low LC50. Mortality was also high for G. ashmeadi, E. eremicus, and E. formosa after exposure to both compounds but only after 48 h posttreatment. The two predators G. punctipes and O. insidiosus were variably susceptible to imidacloprid and thiamethoxam after 96-h exposure. However, toxicity to these predators may be related to their feeding on foliage and not just contact with surface residues. Our laboratory results contradict suggestions of little impact of these systemic neonicotinoids on parasitoids or predators but field studies will be needed to better quantify the levels of such impacts under natural conditions.


Subject(s)
Heteroptera/physiology , Hymenoptera/physiology , Imidazoles/toxicity , Insect Control/methods , Insecticides/toxicity , Nitro Compounds/toxicity , Oxazines/toxicity , Thiazoles/toxicity , Animals , Citrus/chemistry , Food Chain , Hemiptera/physiology , Lethal Dose 50 , Neonicotinoids , Plant Leaves/chemistry , Salix/chemistry , Thiamethoxam
9.
Pest Manag Sci ; 65(12): 1311-20, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19842090

ABSTRACT

In the 'Integrated Control Concept', Stern et al. emphasized that, although insecticides are necessary for agricultural production, they should only be used as a last resort and as a complement to biological control. They argued that selective insecticide use should only be attempted after it has been determined that insect control with naturally occurring biotic agents is not capable of preventing economic damage. However, they concluded their seminal paper by emphasizing that integrated control will not work where natural enemies are inadequate or where economic thresholds are too low to rely on biological control. Thus, it is no surprise that insect control in high-value, fresh-market lettuce crops grown in the desert southwest have relied almost exclusively on insecticides to control a complex of mobile, polyphagous pests. Because lettuce and leafy greens are short-season annual crops with little or no tolerance for insect damage or contamination, biological control is generally considered unacceptable. High expectations from consumers for aesthetically appealing produce free of pesticide residues further forces vegetable growers to use chemical control tactics that are not only effective but safe. Consequently, scientists have been developing integrated pest management (IPM) programs for lettuce that are aimed at reducing the economic, occupational and dietary risks associated with chemical controls of the past. Most of these programs have drawn upon the integrated control concept and promote the importance of understanding the agroecosystem, and the need to sample for pest status and use action thresholds for cost-effective insect control. More recently, pest management programs have implemented newly developed, reduced-risk chemistries that are selectively efficacious against key pests. This paper discusses the influence that the integrated control concept, relative to zero-tolerance market standards and other constraints, has had on the adoption of pest management in desert lettuce crops.


Subject(s)
Insect Control/history , Insecta/drug effects , Insecticides/pharmacology , Lactuca/parasitology , Plant Diseases/parasitology , Animals , Consumer Product Safety , Desert Climate , History, 20th Century , Humans , Insect Control/economics , Insecta/physiology , Insecticides/history , Pest Control, Biological , Southwestern United States
10.
J Econ Entomol ; 98(1): 182-7, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15765681

ABSTRACT

A competitive enzyme-linked immunosorbent assay (ELISA) technique was evaluated for quantifying titers of imidacloprid in xylem fluid extracted from Vitis vinifera L. grapevines that were treated with systemic applications of the neonicotinoid insecticide Admire. Evidence of matrix effects, factors that compromise the precision and accuracy of the ELISA, was present in assays with undiluted xylem fluid. These effects could be eliminated by dilution of extracts in water, resulting in a lower sensitivity of the assay of 4 microg liter(-1). In a field trial conducted in a commercial vineyard, there was an excellent correlation between Admire application rates and xylem fluid concentrations of imidacloprid. At an Admire application rate of 1.17 liter ha(-1) (16 fl oz per acre), uptake of imidacloprid into vines was rapid. Imidacloprid was consistently detected in the xylem for up to 3 mo after application at concentrations known to be effective at managing populations of the sharpshooter Homalodisca coagulata Say, an important vector of Xylella fastidiosa Wells in California vineyards. The ELISA is a sensitive technique that can be used to study the behavior of systemic insecticides within crop systems and their impact on pest populations.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Fruit/chemistry , Imidazoles/analysis , Insecticides/analysis , Plant Extracts/chemistry , Vitis/chemistry , Neonicotinoids , Nitro Compounds , Sensitivity and Specificity
11.
Pest Manag Sci ; 61(1): 75-84, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15593076

ABSTRACT

Titers of two systemic neonicotinoid insecticides in citrus trees were measured in conjunction with conventional evaluations of their impact on glassy-winged sharpshooter (Homalodisca coagulata (Say); GWSS) populations. Xylem fluid samples were collected at regular intervals and from multiple locations within field-grown citrus trees to determine imidacloprid and thiamethoxam concentrations using commercial ELISA kits. Uptake profiles varied considerably with peak mean titers of imidacloprid occurring 6-8 weeks after application compared with 2 weeks for thiamethoxam. The persistence of each compound also varied as near-peak levels of imidacloprid were sustained for another 6-10 weeks before gradually declining. In contrast, thiamethoxam titers declined more rapidly after the initial peak, possibly reflecting an application rate only one-quarter of that used for imidacloprid. Within-tree distributions were more similar for the two compounds, with no significant effect due to height of the sample (upper or lower half) or to the quadrant location within the tree, with the exception of one quadrant in the thiamethoxam-treated trees. Substantial reductions in GWSS nymphs and adults were observed in imidacloprid-treated trees during the 2001 trial and were sustained for 4-5 months after treatment. Treatment effects on nymphs were not as well pronounced in the 2002 trial, when overall GWSS infestations were much reduced from the previous year. However, consistently lower adult infestations were still observed in 2002 for both treatments compared with untreated trees. Information on the spatial and temporal profiles in citrus trees was obtained for both compounds to complement field impact data and improve understanding of their pest management potential.


Subject(s)
Citrus/metabolism , Hemiptera , Imidazoles/metabolism , Insecticides/metabolism , Nitro Compounds/metabolism , Oxazines/metabolism , Animals , Insect Control/methods , Neonicotinoids , Plant Diseases/parasitology , Thiamethoxam , Thiazoles , Time Factors
12.
J Econ Entomol ; 98(6): 1763-73, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16539092

ABSTRACT

Integrated pest management (IPM) has the goal of combining several control methods that reduce populations of pest insects and their damage to tolerable levels and thereby reduce the use of costly pesticides that may harm the environment. Insect populations can be monitored during the season to determine when the densities exceed an economic threshold that requires treatment, often as an insecticide application. We developed a simulation model where insect populations varied in exponential growth in fields and dispersed to adjacent fields each day of a season. The first model monitored populations of individual fields in a grid of fields and treated any field with insecticide if it exceeded a threshold population (asynchronous model) as done in traditional IPM. The second model treated the entire grid of fields with insecticide when the average population of all fields exceeded the threshold (synchronous model). We found that the synchronous model at all growth and dispersal rates tested had average field populations during a season that were significantly lower and required fewer treatments than the asynchronous method. Parameters such as percentage of fallow fields, number of fields, and treatment threshold had little affect on relative differences between the two models. The simulations indicate that cooperation among growers in areawide monitoring of fields to obtain an average population estimate for use in treatment thresholds would result in significantly less insect damage and fewer insecticide treatments. The synchronous method is more efficient because population refugia are precluded from which dispersal could reintroduce insects.


Subject(s)
Insect Control/methods , Insecta/physiology , Models, Biological , Animals , Computer Simulation , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...