Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Aerosp Med Hum Perform ; 89(2): 122-129, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29463357

ABSTRACT

INTRODUCTION: With the development of the commercial space industry, growing numbers of spaceflight participants will engage in activities with a risk for pulmonary injuries, including pneumothorax, ebullism, and decompression sickness, as well as other concomitant trauma. Medical triage capabilities for mishaps involving pulmonary conditions have not been systematically reviewed. Recent studies have advocated the use of point-of-care ultrasound to screen for lung injury or illness. The operational utility of portable ultrasound systems in disaster relief and other austere settings may be relevant to commercial spaceflight. METHODS: A systematic review of published literature was conducted concerning the use of point-of-care pulmonary ultrasound techniques in austere environments, including suggested examination protocols for triage and diagnosis. RESULTS: Recent studies support the utility of pulmonary ultrasound examinations when performed by skilled operators, and comparability of the results to computed tomography and chest radiography for certain conditions, with important implications for trauma management in austere environments. DISCUSSION: Pulmonary injury and illness are among the potential health risks facing spaceflight participants. Implementation of point-of-care ultrasound protocols could aid in the rapid diagnosis, triage, and treatment of such conditions. Though operator-dependent, ultrasound, with proper training, experience, and equipment, could be a valuable tool in the hands of a first responder supporting remote spaceflight operations.Johansen BD, Blue RS, Castleberry TL, Antonsen EL, Vanderploeg JM. Point-of-care ultrasound for pulmonary concerns in remote spaceflight triage environments. Aerosp Med Hum Perform. 2018; 89(2):122-129.


Subject(s)
Aerospace Medicine/instrumentation , Lung Diseases/diagnostic imaging , Point-of-Care Systems , Ultrasonography/instrumentation , Humans , Lung Diseases/therapy , Lung Injury/diagnostic imaging , Pneumothorax/diagnostic imaging , Pulmonary Edema/diagnostic imaging , Space Flight , Triage , Ultrasonography, Interventional
2.
Aerosp Med Hum Perform ; 88(11): 1008-1015, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29046176

ABSTRACT

INTRODUCTION: There are limited data on cardiac dysrhythmias in laypersons during hypergravity exposure. We report layperson electrocardiograph (ECG) findings and tolerance of dysrhythmias during centrifuge-simulated suborbital spaceflight. METHODS: Volunteers participated in varied-length centrifuge training programs of 2-7 centrifuge runs over 0.5-2 d, culminating in two simulated suborbital spaceflights of combined +Gz and +Gx (peak +4.0 Gz, +6.0 Gx, duration 5 s). Monitors recorded pre- and post-run mean arterial blood pressure (MAP), 6-s average heart rate (HR) collected at prespecified points during exposures, documented dysrhythmias observed on continuous 3-lead ECG, self-reported symptoms, and objective signs of intolerance on real-time video monitoring. RESULTS: Participating in the study were 148 subjects (43 women). Documented dysrhythmias included sinus pause (N = 5), couplet premature ventricular contractions (N = 4), bigeminy (N = 3), accelerated idioventricular rhythm (N = 1), and relative bradycardia (RB, defined as a transient HR drop of >20 bpm; N = 63). None were associated with subjective symptoms or objective signs of acceleration intolerance. Episodes of RB occurred only during +Gx exposures. Subjects had a higher post-run vs. pre-run MAP after all exposures, but demonstrated no difference in pre- and post-run HR. RB was more common in men, younger individuals, and subjects experiencing more centrifuge runs. DISCUSSION: Dysrhythmias in laypersons undergoing simulated suborbital spaceflight were well tolerated, though RB was frequently noted during short-duration +Gx exposure. No subjects demonstrated associated symptoms or objective hemodynamic sequelae from these events. Even so, heightened caution remains warranted when monitoring dysrhythmias in laypersons with significant cardiopulmonary disease or taking medications that modulate cardiac conduction.Suresh R, Blue RS, Mathers CH, Castleberry TL, Vanderploeg JM. Dysrhythmias in laypersons during centrifuge-stimulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1008-1015.


Subject(s)
Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Hypergravity , Space Simulation , Adult , Aerospace Medicine , Asymptomatic Diseases , Electrocardiography , Female , Humans , Male
3.
Aerosp Med Hum Perform ; 88(8): 789-793, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28720191

ABSTRACT

INTRODUCTION: Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. CASE REPORT: A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. DISCUSSION: While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.


Subject(s)
Accelerated Idioventricular Rhythm/etiology , Hypergravity/adverse effects , Space Simulation , Accelerated Idioventricular Rhythm/physiopathology , Adult , Aerospace Medicine , Asymptomatic Diseases , Centrifugation , Electrocardiography , Humans , Male , Remission, Spontaneous
4.
Aerosp Med Hum Perform ; 88(7): 641-650, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28641681

ABSTRACT

INTRODUCTION: In commercial spaceflight, anxiety could become mission-impacting, causing negative experiences or endangering the flight itself. We studied layperson response to four varied-length training programs (ranging from 1 h-2 d of preparation) prior to centrifuge simulation of launch and re-entry acceleration profiles expected during suborbital spaceflight. We examined subject task execution, evaluating performance in high-stress conditions. We sought to identify any trends in demographics, hemodynamics, or similar factors in subjects with the highest anxiety or poorest tolerance of the experience. METHODS: Volunteers participated in one of four centrifuge training programs of varied complexity and duration, culminating in two simulated suborbital spaceflights. At most, subjects underwent seven centrifuge runs over 2 d, including two +Gz runs (peak +3.5 Gz, Run 2) and two +Gx runs (peak +6.0 Gx, Run 4) followed by three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz, peak +6.0 Gx and +4.0 Gz). Two cohorts also received dedicated anxiety-mitigation training. Subjects were evaluated on their performance on various tasks, including a simulated emergency. RESULTS: Participating in 2-7 centrifuge exposures were 148 subjects (105 men, 43 women, age range 19-72 yr, mean 39.4 ± 13.2 yr, body mass index range 17.3-38.1, mean 25.1 ± 3.7). There were 10 subjects who withdrew or limited their G exposure; history of motion sickness was associated with opting out. Shorter length training programs were associated with elevated hemodynamic responses. Single-directional G training did not significantly improve tolerance. DISCUSSION: Training programs appear best when high fidelity and sequential exposures may improve tolerance of physical/psychological flight stressors. The studied variables did not predict anxiety-related responses to these centrifuge profiles.Blue RS, Bonato F, Seaton K, Bubka A, Vardiman JL, Mathers C, Castleberry TL, Vanderploeg JM. The effects of training on anxiety and task performance in simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(7):641-650.


Subject(s)
Anxiety/psychology , Space Flight , Space Simulation/methods , Task Performance and Analysis , Adult , Aerospace Medicine , Aged , Centrifugation , Cohort Studies , Female , Hemodynamics , Humans , Male , Middle Aged , Motion Sickness , Prospective Studies , Space Simulation/psychology , Young Adult
5.
Aerosp Med Hum Perform ; 87(10): 882-889, 2016.
Article in English | MEDLINE | ID: mdl-27662351

ABSTRACT

INTRODUCTION: Anxiety may present challenges for commercial spaceflight operations, as little is known regarding the psychological effects of spaceflight on laypersons. A recent investigation evaluated measures of anxiety during centrifuge-simulated suborbital commercial spaceflight, highlighting the potential for severe anxiousness to interrupt spaceflight operations. METHODS: To pave the way for future research, an extensive literature review identified existing knowledge that may contribute to formation of interventions for anxiety in commercial spaceflight. Useful literature was identified regarding anxiety from a variety of fields, including centrifugation, fear of flying, motion sickness, and military operations. RESULTS: Fear of flying is the most extensively studied area, with some supportive evidence from centrifugation studies. Virtual reality exposure (VRE) is as effective as actual training flight exposure (or analog exposure) in mitigation of flight-related anxiety. The addition of other modalities, such as cognitive behavioral therapy or biofeedback, to VRE improves desensitization compared to VRE alone. Motion sickness-susceptible individuals demonstrate higher trait anxiety than nonsusceptible individuals; for this reason, motion sickness susceptibility questionnaires may be useful measures to identify at-risk individuals. Some military studies indicate that psychiatric history and personality classification may have predictive value in future research. Medication countermeasures consisting of benzodiazepines may quell in-flight anxiety, but do not likely improve anxiety on repeat exposure. DISCUSSION: The scarce available literature addressing anxiety in unique environments indicates that training/repeated exposure may mitigate anxiety. Anxiety and personality indices may be helpful screening tools, while pharmaceuticals may be useful countermeasures when needed. Mulcahy RA, Blue RS, Vardiman JL, Castleberry TL, Vanderploeg JM. Screening and mitigation of layperson anxiety in aerospace environments. Aerosp Med Hum Perform. 2016; 87(10):882-889.


Subject(s)
Anxiety/therapy , Aviation , Benzodiazepines/therapeutic use , Cognitive Behavioral Therapy , Phobic Disorders/therapy , Virtual Reality Exposure Therapy , Aerospace Medicine , Anxiety/diagnosis , Anxiety/psychology , Centrifugation/psychology , Humans , Motion Sickness/psychology , Motion Sickness/therapy , Personality , Phobic Disorders/diagnosis , Phobic Disorders/psychology
6.
Aerosp Med Hum Perform ; 86(11): 999-1003, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26564767

ABSTRACT

INTRODUCTION: Commercial spaceflight participants (SFPs) will introduce new medical challenges to the aerospace community, with unique medical conditions never before exposed to the space environment. This is a case report regarding the response of a subject with multiple cardiac malformations, including aortic insufficiency, pulmonary atresia, pulmonary valve replacement, ventricular septal defect (post-repair), and pulmonary artery stenosis (post-dilation), to centrifuge acceleration simulating suborbital flight. CASE REPORT: A 23-yr-old man with a history of multiple congenital cardiac malformations underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), run 2) and two +G(x) runs (peak = +6.0 G(x), run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite the subject's significant medical history, he tolerated the acceleration profiles well and demonstrated no significant abnormal physiological responses. DISCUSSION: Potential risks to SFPs with aortic insufficiency, artificial heart valves, or valvular insufficiency include lower +G(z) tolerance, earlier symptom onset, and ineffective mitigation strategies such as anti-G straining maneuvers. There are no prior studies of prolonged accelerations approximating spaceflight in such individuals. This case demonstrates tolerance of acceleration profiles in an otherwise young and healthy individual with significant cardiac malformations, suggesting that such conditions may not necessarily preclude participation in commercial spaceflight.


Subject(s)
Aerospace Medicine , Centrifugation , Heart Defects, Congenital/physiopathology , Space Flight , Acceleration , Adult , Diastole/physiology , Humans , Male , Systole/physiology , Young Adult
7.
Aerosp Med Hum Perform ; 86(4): 407-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25945560

ABSTRACT

INTRODUCTION: With commercial spaceflight comes the possibility of spaceflight participants (SFPs) with significant medical conditions. Those with previously untested medical conditions, such as diabetes mellitus (DM) and the use of indwelling medical devices, represent a unique challenge. It is unclear how SFPs with such devices will react to the stresses of spaceflight. This case report describes two subjects with Type I DM using insulin pumps who underwent simulated dynamic phases of spaceflight via centrifuge G force exposure. CASE REPORT: Two Type I diabetic subjects with indwelling Humalog insulin pumps, a 23-yr-old man averaging 50 u of Humalog daily and a 27-yr-old man averaging 60 u of Humalog daily, underwent seven centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular evaluation, and questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Neither subject experienced adverse clinical responses to the centrifuge exposure. Both maintained blood glucose levels between 110-206 mg · dl(-1). DISCUSSION: Potential risks to SFPs with insulin pump dependent DM include hypo/hyperglycemia, pump damage, neurovestibular dysfunction, skin breakdown, and abnormal stress responses. A search of prior literature did not reveal any previous studies of individuals with DM on insulin pumps exposed to prolonged accelerations. These cases suggest that individuals with conditions dependent on continuous medication delivery might tolerate the accelerations anticipated for commercial spaceflight.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Insulin Infusion Systems , Space Flight , Adult , Aerospace Medicine , Centrifugation , Gravitation , Humans , Male
8.
Aerosp Med Hum Perform ; 86(4): 410-3, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25945561

ABSTRACT

INTRODUCTION: Future commercial spaceflight participants (SFPs) with conditions requiring personal medical devices represent a unique challenge. The behavior under stress of cardiac implanted devices (CIDs) such as pacemakers is of special concern. No known data currently exist on how such devices may react to the stresses of spaceflight. We examined the responses of two volunteer subjects with CIDs to G forces in a centrifuge to evaluate how similar potential commercial SFPs might tolerate the forces of spaceflight. CASE REPORT: Two subjects, 75- and 79-yr-old men with histories of atrial fibrillation and implanted dual-lead, rate-responsive pacemakers, underwent seven centrifuge runs over 2 d. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx/+Gz). Data collected included blood pressures, electrocardiograms, pulse oximetry, neurovestibular exams, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite both subjects' significant medical histories, neither had abnormal physiological responses. Post-spin analysis demonstrated no lead displacement, damage, or malfunction of either CID. DISCUSSION: Potential risks to SFPs with CIDs include increased arrhythmogenesis, lead displacement, and device damage. There are no known prior studies of individuals with CIDs exposed to accelerations anticipated during the dynamic phases of suborbital spaceflight. These cases demonstrate that even individuals with significant medical histories and implanted devices can tolerate the acceleration exposures of commercial spaceflight. Further investigation will determine which personal medical devices present significant risks during suborbital flight and beyond.


Subject(s)
Pacemaker, Artificial , Space Flight , Aerospace Medicine , Aged , Atrial Fibrillation/therapy , Centrifugation , Humans , Male
9.
Aviat Space Environ Med ; 85(12): 1217-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25479265

ABSTRACT

INTRODUCTION: Historically, space has been the venue of the healthy individual. With the advent of commercial spaceflight, we face the novel prospect of routinely exposing spaceflight participants (SPFs) with multiple comorbidities to the space environment. Preflight screening procedures must be developed to identify those individuals at increased risk during flight. We examined the responses of volunteers to centrifuge accelerations mimicking commercial suborbital spaceflight profiles to evaluate how potential SFPs might tolerate such forces. We evaluated our screening process for medical approval of subjects for centrifuge participation for applicability to commercial spaceflight operations. METHODS: All registered subjects completed a medical questionnaire, physical examination, and electrocardiogram. Subjects with identified concerns including cardiopulmonary disease, hypertension, and diabetes were required to provide documentation of their conditions. RESULTS: There were 335 subjects who registered for the study, 124 who completed all prescreening, and 86 subjects who participated in centrifuge trials. Due to prior medical history, five subjects were disqualified, most commonly for psychiatric reasons or uncontrolled medical conditions. Of the subjects approved, four individuals experienced abnormal physiological responses to centrifuge profiles, including one back strain and three with anxiety reactions. DISCUSSION: The screening methods used were judged to be sufficient to identify individuals physically capable of tolerating simulated suborbital flight. Improved methods will be needed to identify susceptibility to anxiety reactions. While severe or uncontrolled disease was excluded, many subjects successfully participated in centrifuge trials despite medical histories of disease that are disqualifying under historical spaceflight screening regimes. Such screening techniques are applicable for use in future commercial spaceflight operations.


Subject(s)
Mass Screening/methods , Space Flight , Weightlessness Simulation , Back Injuries/physiopathology , Cardiovascular Diseases/physiopathology , Centrifugation , Diabetes Mellitus/physiopathology , Humans , Hypertension/physiopathology , Lung Diseases/physiopathology , Neck Injuries/physiopathology , Prospective Studies
10.
Aviat Space Environ Med ; 85(11): 1106-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25329943

ABSTRACT

INTRODUCTION: Some commercial spaceflight participants (SFPs) may have medical conditions that require implanted medical devices (IMDs), such as cardiac pacemakers, defibrillators, insulin pumps, or similar electronic devices. The effect of space radiation on the function of IMDs is unknown. This review will identify known effects of terrestrial and aviation electromagnetic interference (EMI) and radiation on IMDs in order to provide insight into the potential effects of radiation exposures in the space environment. METHODS: A systematic literature review was conducted on available literature on human studies involving the effects of EMI as well as diagnostic and therapeutic radiation on IMDs. RESULTS: The literature review identified potential transient effects from EMI and diagnostic radiation levels as low as 10 mGy on IMDs. High-energy, therapeutic, ionizing radiation can cause more permanent device malfunctions at doses as low as 40 mGy. Radiation doses from suborbital flight altitudes and durations are anticipated to be less than those experienced during an average round-trip, cross-country airline flight and are unlikely to result in significant detriment, though longer, orbital flights may expose SFPs to doses potentially harmful to IMD function. DISCUSSION: Individuals with IMDs should experience few, if any, radiation-related device malfunctions during suborbital flight, but could have problems with radiation exposures associated with longer, orbital flights.


Subject(s)
Defibrillators, Implantable , Electromagnetic Radiation , Pacemaker, Artificial , Radiation, Ionizing , Space Flight , Humans , Radiation Dosage
11.
Aviat Space Environ Med ; 85(8): 847-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25199128

ABSTRACT

INTRODUCTION: Anxiety and psychological concerns may pose a challenge to future commercial spaceflight. To help identify potential measures of anxiousness and indicators of flight-related stress, the psychiatric histories and anxiousness responses of volunteers exposed to G forces in centrifuge-simulated spaceflight acceleration profiles were examined. METHODS: Over 2 d, 86 individuals (63 men, 23 women), 20-78 yr old, underwent up to 7 centrifuge runs. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z)) and two +Gx runs (peak = +6.0 G(x)). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z)). Hemodynamic data were collected during the profiles. Subjects completed a retrospective self-report anxiety questionnaire. Medical monitors identified individuals exhibiting varying degrees of anxiousness during centrifuge exposure, medical histories of psychiatric disease, and other potential indicators of psychological intolerance of spaceflight. RESULTS: The retrospective survey identified 18 individuals self-reporting anxiousness, commonly related to unfamiliarity with centrifuge acceleration and concerns regarding medical history. There were 12 individuals (5 men, 7 women, average age 46.2 yr) who were observed to have anxiety that interfered with their ability to complete training; of these, 4 reported anxiousness on their questionnaire and 9 ultimately completed the centrifuge profiles. Psychiatric history was not significantly associated with anxious symptoms. DISCUSSION: Anxiety is likely to be a relevant and potentially disabling problem for commercial spaceflight participants; however, positive psychiatric history and self-reported symptoms did not predict anxiety during centrifuge performance. Symptoms of anxiousness can often be ameliorated through training and coaching. Even highly anxious individuals are likely capable of tolerating commercial spaceflight.


Subject(s)
Anxiety/psychology , Astronauts/psychology , Hypergravity , Space Flight , Acceleration , Adult , Aerospace Medicine , Aged , Anxiety/prevention & control , Female , Humans , Male , Middle Aged , Motion Sickness/psychology , Prospective Studies , Surveys and Questionnaires
12.
Aviat Space Environ Med ; 85(7): 721-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25022160

ABSTRACT

INTRODUCTION: We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. METHODS: Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. RESULTS: A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. DISCUSSION: These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.


Subject(s)
Gravitation , Weightlessness Simulation , Adult , Aerospace Medicine , Age Factors , Aged , Anxiety , Blood Pressure/physiology , Cardiovascular Diseases/physiopathology , Chest Pain/physiopathology , Cough/physiopathology , Diabetes Mellitus/physiopathology , Female , Heart Rate/physiology , Hemodynamics/physiology , Humans , Hypertension/physiopathology , Lung Diseases/physiopathology , Male , Middle Aged , Nausea/physiopathology , Oximetry , Prospective Studies , Space Flight , Spinal Diseases/physiopathology , Visual Fields/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...