Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Sci ; 31(5): 1234-1245, 2024 May.
Article in English | MEDLINE | ID: mdl-38160209

ABSTRACT

This paper will review a remarkable new approach to in vitro maturation "IVM" of oocytes from ovarian tissue, based on our results with in vitro oogenesis from somatic cells. As an aside benefit we also have derived a better understanding of ovarian longevity from ovary transplant. We have found that primordial follicle recruitment is triggered by tissue pressure gradients. Increased pressure holds the follicle in meiotic arrest and prevents recruitment. Therefore recruitment occurs first in the least dense inner tissue of the cortico-medullary junction. Many oocytes can be obtained from human ovarian tissue and mature to metaphase 2 in vitro with no need for ovarian stimulation. Ovarian stimulation may only be necessary for removing the oocyte from the ovary, but this can also be accomplished by simple dissection at the time of ovary tissue cryopreservation. By using surgical dissection of the removed ovary, rather than a needle stick, we can obtain many oocytes from very small follicles not visible with ultrasound. A clearer understanding of ovarian function has come from in vitro oogenesis experiments, and that explains why IVM has now become so simple and robust. Tissue pressure (and just a few "core genes" in the mouse) direct primordial follicle recruitment and development to mature oocyte, and therefore also control ovarian longevity. There are three distinct phases to oocyte development both in vitro and in vivo: in vitro differentiation "IVD" which is not gonadotropin sensitive (the longest phase), in vitro gonadotropin sensitivity "IVG" which is the phase of gonadotropin stimulation to prepare for meiotic competence, and IVM to metaphase II. On any given day 35% of GVs in ovarian tissue have already undergone "IVD" and "IVG" in vivo, and therefore are ready for IVM.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oogenesis , Ovary , Female , Animals , Oogenesis/physiology , Humans , Ovary/physiology , Oocytes/physiology , Ovarian Follicle/physiology , Mice
2.
Reprod Biomed Online ; 44(3): 504-514, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35151573

ABSTRACT

RESEARCH QUESTION: Is it possible to use experience gained from 24 years of frozen ovarian transplantation, and from recent experience with in-vitro gametogenesis to accomplish simple and robust in-vitro maturation (IVM) of oocytes from human ovarian tissue? DESIGN: A total of 119 female patients between age 2 and 35 years old underwent ovary cryopreservation (as well as in-vitro maturation of oocytes and IVM in the last 13 individuals) over a 24-year period. Up to 22 years later, 17 returned to have their ovary tissue thawed and transplanted back. RESULTS: Every woman had a return of ovarian function 5 months after transplant, similar to previous observations. As observed before, anti-Müllerian hormone (AMH) concentration rose as FSH fell 4 months later. The grafts continued to work up to 8 years. Of the 17, 13 (76%) became pregnant with intercourse at least once, resulting in 19 healthy live births, including six live births from three women who had had leukaemia. Of the harvested germinal vesicle oocytes, 35% developed with simple culture media into mature metaphase II oocytes. CONCLUSIONS: The authors concluded the following. First, ovary tissue cryopreservation is a robust method for preserving fertility even for women with leukaemia, without a need to delay cancer treatment. Second, many mature oocytes can often be obtained from ovary tissue with simple media and no need for ovarian stimulation. Third, ovarian stimulation only be necessary for removing the oocyte from the ovary, which can also be accomplished by simple dissection at the time of ovary freezing. Finally, pressure and just eight 'core genes' control primordial follicle recruitment and development.


Subject(s)
Fertility Preservation , Leukemia , Cryopreservation/methods , Female , Fertility Preservation/methods , Humans , Longevity , Male , Oocytes/physiology , Ovary/transplantation , Pregnancy
3.
J Assist Reprod Genet ; 35(12): 2205-2213, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30255455

ABSTRACT

PURPOSE: To report the results of cryopreserved ovary tissue transplantation for leukemia and other cancers, in a single US center. METHODS: One hundred eight females between age 6 and (median age 24) 35 were referred for possible ovary tissue cryopreservation over a 20-year period, with either slow freeze or vitrification. Thus far 13 patients returned up to 18 years later to have their tissue transplanted back. RESULTS: All 13 patients had return of ovarian function 5 months post transplant with regular menstrual cycling. AMH rose to very high levels as the FSH declined to normal. Four months later, the AMH again declined to very low levels. Nonetheless, the grafts remained functional for up to 5 years or longer. Ten of the 13 (77%) became spontaneously pregnant at least once, resulting in 13 healthy babies. A total of 24 healthy babies have been born 11 from fresh transplanted ovarian tissue and 13 from cryopreserved transplanted ovarian tissue. CONCLUSIONS: (1) Ovary tissue cryopreservation is a robust method for preserving a woman's fertility. (2) Cortical tissue pressure may be a key regulator of primordial follicle arrest, recruitment, and ovarian longevity. (3) This is the only such series yet reported in the USA.


Subject(s)
Cryopreservation , Fertility Preservation/methods , Ovarian Follicle/transplantation , Ovary/transplantation , Adult , Female , Humans , Neoplasms/pathology , Ovary/physiology , Pregnancy , Primary Ovarian Insufficiency/pathology , Vitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...