Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1213344, 2023.
Article in English | MEDLINE | ID: mdl-37638016

ABSTRACT

Memory B cells are comprised of unswitched (CD27+IgD+) and switched (CD27+IgD-) subsets. The origin and function of unswitched human memory B cells are debated in the literature, whereas switched memory B cells are primed to respond to recurrent infection. Unswitched memory B cells have been described to be reduced in frequency with severe SARS-CoV2 infection and here we characterize their activation status, BCR functionality, and contribution to virally-induced cytokine production. Analyses of whole blood from healthy individuals, people immunized against SARS-CoV2, and those who have had mild and severe SARS-CoV2 infection, confirm a reduction in the frequency of unswitched memory B cells during severe SARS-CoV2 infection and demonstrate this reduction is associated with increased levels of systemic TNFα. We further document how severe viral infection is associated with an increased frequency of 'IgD+' only memory B cells that correlate with increased IgG autoantibody levels. Unswitched and switched memory B cells from severe SARS-CoV2 infection displayed evidence of heightened activation with a concomitant reduction in the expression of the inhibitory receptor CD72. Functionally, both populations of memory B cells from severe SARS-COV2 infection harbored a signaling-competent BCR that displayed enhanced BCR signaling activity in the unswitched population. Finally, we demonstrate that B cells from mild SARS-CoV2 infection are poised to secrete pro-inflammatory cytokines IL-6 and TNFα. Importantly, unswitched memory B cells were a major producer of IL-6 and switched memory B cells were a major producer of TNFα in response to viral TLR ligands. Together these data indicate that B cells contribute to the inflammatory milieu during viral infection.


Subject(s)
COVID-19 , Memory B Cells , Humans , Tumor Necrosis Factor-alpha , Interleukin-6 , RNA, Viral , SARS-CoV-2 , Cytokines
2.
Front Immunol ; 13: 988125, 2022.
Article in English | MEDLINE | ID: mdl-36131937

ABSTRACT

Double negative (DN) B cells (CD27-IgD-) comprise a heterogenous population of DN1, DN2, and the recently described DN3 and DN4 subsets. In autoimmune disease, DN2 cells are reported to be precursors to autoreactive antibody secreting cells and expansion of DN2 cells is linked to elevated interferon levels. Severe SARS-CoV-2 infection is characterized by elevated systemic levels of pro-inflammatory cytokines and serum autoantibodies and expansion of the DN2 subset in severe SARS-CoV-2 infection has been reported. However, the activation status, functional capacity and contribution to virally-induced autoantibody production by DN subsets is not established. Here, we validate the finding that severe SARS-CoV-2 infection is associated with a reduction in the frequency of DN1 cells coinciding with an increase in the frequency of DN2 and DN3 cells. We further demonstrate that with severe viral infection DN subsets are at a heightened level of activation, display changes in immunoglobulin class isotype frequency and have functional BCR signaling. Increases in overall systemic inflammation (CRP), as well as specific pro-inflammatory cytokines (TNFα, IL-6, IFNγ, IL-1ß), significantly correlate with the skewing of DN1, DN2 and DN3 subsets during severe SARS-CoV-2 infection. Importantly, the reduction in DN1 cell frequency and expansion of the DN3 population during severe infection significantly correlates with increased levels of serum autoantibodies. Thus, systemic inflammation during SARS-CoV-2 infection drives changes in Double Negative subset frequency, likely impacting their contribution to generation of autoreactive antibodies.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Autoantibodies , B-Lymphocytes , Humans , Immunoglobulin D , Immunoglobulin Isotypes , Inflammation , Interferons , Interleukin-6 , SARS-CoV-2
3.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35420627

ABSTRACT

Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset. We asked whether SARS-CoV-2-associated inflammation impairs BND cell peripheral tolerance. To address this, PBMCs and plasma were collected from healthy controls, individuals immunized against SARS-CoV-2, or subjects with convalescent or severe SARS-CoV-2 infection. We demonstrate that BND cells from severely infected individuals are significantly activated, display reduced inhibitory receptor expression, and restored BCR signaling, indicative of a breach in anergy during viral infection, supported by increased levels of autoreactive antibodies. The phenotypic and functional BND cell alterations significantly correlate with increased inflammation in severe SARS-CoV-2 infection. Thus, autoreactive BND cells are released from peripheral tolerance with SARS-CoV-2 infection, likely as a consequence of robust systemic inflammation.


Subject(s)
COVID-19 , Peripheral Tolerance , Antibodies, Viral , B-Lymphocytes , Humans , Inflammation/metabolism , SARS-CoV-2
4.
Gut Microbes ; 14(1): 2045852, 2022.
Article in English | MEDLINE | ID: mdl-35258402

ABSTRACT

Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , HIV-1 , Bacteria/genetics , CD4-Positive T-Lymphocytes , Colon/pathology , Dysbiosis/complications , Granzymes , Humans , Interleukin-2
5.
Clin Transl Immunology ; 11(1): e1367, 2022.
Article in English | MEDLINE | ID: mdl-35028137

ABSTRACT

OBJECTIVES: While much of the research concerning factors associated with responses to immune checkpoint inhibitors (ICIs) has focussed on the contributions of conventional peptide-specific T cells, the role of unconventional T cells, such as mucosal-associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are an abundant population of innate-like T cells expressing a semi-invariant T-cell receptor restricted to the MHC class I-like molecule, MR1, presenting vitamin B metabolites derived from bacteria. We sought to characterise MAIT cells in melanoma patients and determined their association with treatment responses and clinical outcomes. METHODS: In this prospective clinical study, we analysed the frequency and functional profile of circulating and tumor-infiltrating MAIT cells in human melanoma patients. Using flow cytometry, we compared these across metastatic sites and between ICI responders vs. non-responders as well as healthy donors. RESULTS: We identified tumor-infiltrating MAIT cells in melanomas across metastatic sites and found that the number of circulating MAIT cells is reduced in melanoma patients compared to healthy donors. However, circulating MAIT cell frequencies are restored by ICI treatment in responding patients, correlating with treatment responses, in which patients with high frequencies of MAIT cells exhibited significantly improved overall survival. CONCLUSION: Our results suggest that MAIT cells may be a potential predictive marker of responses to immunotherapies and provide rationale for testing MAIT cell-directed therapies in combination with current and next-generation ICIs.

6.
J Immunol ; 206(12): 3043-3052, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34117105

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/ß/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.


Subject(s)
Acinetobacter/immunology , Granzymes/immunology , Interleukin-15/immunology , Lymphocytes/immunology , Ruminococcus/immunology , Salmonella typhimurium/immunology , Colon/immunology , Gastrointestinal Microbiome/immunology , Humans , Immunity, Innate/immunology
7.
Bio Protoc ; 10(2): e3486, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-33654719

ABSTRACT

Gut CD4 T cells are major targets of HIV-1 and are massively depleted early during infection. To better understand the mechanisms governing HIV-1-mediated CD4 T cell death, we developed the physiologically-relevant Lamina Propria Aggregate Culture (LPAC) model. The LPAC model is ideal for studying CD4 T cell death induced by clinically-relevant Transmitted/Founder (TF) HIV-1 strains and is also suitable for studying how enteric microbes and soluble factors (e.g., Type I Interferons) impact LP CD4 T cell death and function. Here, we detail the protocol to establish LP CD4 T cell infection using a process of spinoculation, the subsequent evaluation of infection levels using multicolor flow cytometry and the determination of overall LP CD4 T cell death using absolute LP CD4 T cell counts. We also describe the preparation of virus stocks of Transmitted/Founder (TF) HIV-1 infectious molecular clones that were successfully used in the LPAC model.

8.
J Leukoc Biol ; 107(1): 119-132, 2020 01.
Article in English | MEDLINE | ID: mdl-31573727

ABSTRACT

Intestinal lamina propria (LP) CD4 T cells play critical roles in maintaining intestinal homeostasis and in immune responses to enteric microbes, yet little is known regarding whether they contribute to age-associated intestinal immune dysfunction. In this study, we evaluated the direct ex vivo frequency, activation/inhibitory phenotype, death profiles, and in vitro functional responses of human jejunum LP CD4 T cells, including Th1, Th17, and Th22 subsets isolated from younger (<45 years) and older (>65years) persons. Expression of the co-inhibitory molecule CTLA-4 was significantly lower in older CD4 T cells, whereas expression of HLA-DR, CD38, CD57, and PD-1 were not significantly different between groups. Total CD4 T cell frequencies were similar between age groups, but lower frequencies and numbers of Th17 cells were observed directly ex vivo in older samples. Older Th17 and Th1 cells proliferated to a lesser degree following in vitro exposure to bacterial antigens vs. their younger counterparts. Levels of spontaneous cell death were increased in older CD4 T cells; however, cellular death profiles following activation did not differ based on age. Thus, small intestinal CD4 T cells from older persons have altered phenotypic and functional profiles including reduced expression of a co-inhibitory molecule, increased spontaneous cell death, and both reduced frequencies and altered functional responses of specific Th cell subsets. These changes may contribute to altered intestinal homeostasis and loss of protective gut immunity with aging.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Interleukin-17/immunology , Interleukin-17/metabolism , Male , Middle Aged , Phenotype , Young Adult
9.
Gut Microbes ; 12(1): 1667723, 2020 11 09.
Article in English | MEDLINE | ID: mdl-31583949

ABSTRACT

Group 1 Innate Lymphoid Cells (which include Natural Killer cells and ILC1s) aid in gut anti-bacterial defense through the production of IFNγ, which is critical for mobilizing protective responses against enteric pathogens. When intestinal epithelial barrier integrity is compromised, commensal bacteria are likely to translocate from the gut lumen into the lamina propria. Few studies have addressed the mechanisms by which commensal bacteria impact the function of gut Group 1 ILCs, especially ILC1s. Utilizing an in vitro human colonic lamina propria mononuclear cell (LPMC) model, we evaluated Group 1 ILC cytokine and cytolytic protein production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria. IFNγ-production by NK cells and ILC1s was significantly increased after LPMC exposure to Gram-negative commensal or pathogenic bacteria, but not after exposure to the Gram-positive bacteria commensals tested. Stimulation of IFNγ production from Group 1 ILCs was not through direct recognition of bacteria by NK cells or ILC1s, but rather required accessory cells within the LPMC population. Myeloid dendritic cells generated IL-12p70, IL-18, and IL-1ß upon exposure to enteric bacteria and these cytokines contributed to Group 1 ILC production of IFNγ. Furthermore, Gram-negative commensal or pathogenic bacteria induced significant expression of Granzyme B in NK cells and ILC1s. Overall, these data demonstrate that some enteric commensal bacteria indirectly induce inflammatory cytokine production and cytolytic protein expression from human colonic Group 1 ILCs, a process which could contribute to inflammation in the setting of microbial translocation.


Subject(s)
Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , Granzymes/immunology , Interferon-gamma/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Gastrointestinal Microbiome/physiology , Humans , Immunity, Innate/immunology , Inflammation/microbiology , Interleukin-12 Subunit p35/immunology , Interleukin-18/immunology , Interleukin-1beta/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Salmonella typhimurium/immunology , Tight Junctions
10.
Front Immunol ; 10: 649, 2019.
Article in English | MEDLINE | ID: mdl-30984202

ABSTRACT

Innate lymphoid cells (ILCs) are a diverse family of cells that play critical roles in mucosal immunity. One subset of the ILC family, Group 3 ILCs (ILC3s), has been shown to aid in gut homeostasis through the production of IL-22. IL-22 promotes gut homeostasis through its functional effect on the epithelial barrier. When gut epithelial barrier integrity is compromised, such as in Human Immunodeficiency Virus (HIV) infection and inflammatory bowel disease (IBD), microbes from the gut lumen translocate into the lamina propria, inducing a multitude of potentially pathogenic immune responses. In murine models of bacterial infection, there is evidence that bacteria can induce pro-inflammatory IFNγ production in ILC3s. However, the impact of diverse translocating bacteria, particularly commensal bacteria, in dictating IFNγ versus IL-22 production by human gut ILC3s remains unclear. Here, we utilized an in vitro human lamina propria mononuclear cell (LPMC) model to evaluate ILC3 cytokine production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria and determined potential mechanisms by which these cytokine responses were induced. The percentages of IL-22-producing ILC3s, but not IFNγ-producing ILC3s, were significantly increased after LPMC exposure to both Gram-positive and Gram-negative commensal or pathogenic bacterial stimuli. Stimulation of IL-22 production from ILC3s was not through direct recognition of bacterial antigen by ILC3s, but rather required the help of accessory cells within the LPMC population. CD11c+ myeloid dendritic cells generated IL-23 and IL-1ß in response to enteric bacteria and contributed to ILC3 production of IL-22. Furthermore, ligation of the natural cytotoxicity receptor NKp44 on ILC3s in response to bacteria stimulation also significantly increased the percentage of IL-22-producing ILC3s. Overall, these data demonstrate that human gut microbiota, including commensal bacteria, indirectly modulate colonic ILC3 function to induce IL-22, but additional signals are likely required to induce IFNγ production by colonic ILC3s in the setting of inflammation and microbial translocation.


Subject(s)
Colon , Gastrointestinal Microbiome/immunology , Gram-Negative Bacteria/immunology , Gram-Positive Bacteria/immunology , Immunity, Innate , Interferon-gamma/immunology , Interleukins/immunology , Intestinal Mucosa , Lymphocytes/immunology , Bacterial Translocation/immunology , Colon/immunology , Colon/microbiology , Humans , Interleukin-1beta/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Interleukin-22
11.
Sci Rep ; 9(1): 1343, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718654

ABSTRACT

Sex bias in innate defense against Staphylococcus aureus skin and soft tissue infection (SSTI) is dependent on both estrogen production by the host and S. aureus secretion of the virulence factor, α-hemolysin (Hla). The impact of estrogen signaling on the immune system is most often studied in terms of the nuclear estrogen receptors ERα and ERß. However, the potential contribution of the G protein-coupled estrogen receptor (GPER) to innate defense against infectious disease, particularly with respect to skin infection, has not been addressed. Using a murine model of SSTI, we found that GPER activation with the highly selective agonist G-1 limits S. aureus SSTI and Hla-mediated pathogenesis, effects that were absent in GPER knockout mice. Specifically, G-1 reduced Hla-mediated skin lesion formation and pro-inflammatory cytokine production, while increasing bacterial clearance. In vitro, G-1 reduced surface expression of the Hla receptor, ADAM10, in a human keratinocyte cell line and increased resistance to Hla-mediated permeability barrier disruption. This novel role for GPER activation in skin innate defense against infectious disease suggests that G-1 may have clinical utility in patients with epithelial permeability barrier dysfunction or who are otherwise at increased risk of S. aureus infection, including those with atopic dermatitis or cancer.


Subject(s)
Bacterial Toxins/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Hemolysin Proteins/genetics , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Staphylococcal Infections/genetics , ADAM10 Protein/genetics , Animals , Bacterial Toxins/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Hemolysin Proteins/metabolism , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/genetics , Keratinocytes/microbiology , Mice , Mice, Knockout , Signal Transduction/genetics , Skin/immunology , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity
12.
J Immunol ; 200(2): 657-668, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29222165

ABSTRACT

Numerous studies have reported sex bias in infectious diseases, with bias direction dependent on pathogen and site of infection. Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs), yet sex bias in susceptibility to S. aureus SSTI has not been described. A search of electronic health records revealed an odds ratio of 2.4 for S. aureus SSTI in males versus females. To investigate the physiological basis of this bias, we compared outcomes between male and female mice in a model of S. aureus dermonecrosis. Consistent with the epidemiological data, female mice were better protected against SSTI, with reduced dermonecrosis followed later by increased bacterial clearance. Protection in females was disrupted by ovariectomy and restored by short-term estrogen administration. Importantly, this sex bias was mediated by a sex-specific response to the S. aureus-secreted virulence factor α-hemolysin (Hla). Infection with wild-type S. aureus suppressed inflammatory cytokine production in the skin of female, but not male, mice when compared with infection with an isogenic hla deletion mutant. This differential response was conserved following injection with Hla alone, demonstrating a direct response to Hla independent of bacterial burden. Additionally, neutrophils, essential for clearing S. aureus, demonstrated sex-specific S. aureus bactericidal capacity ex vivo. This work suggests that sex-specific skin innate responsiveness to Hla and neutrophil bactericidal capacity play important roles in limiting S. aureus SSTI in females. Understanding the molecular mechanisms controlling this sex bias may reveal novel targets to promote host innate defense against S. aureus skin infection.


Subject(s)
Bacterial Toxins/metabolism , Hemolysin Proteins/metabolism , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/pathogenicity , Animals , Cytokines/metabolism , Disease Models, Animal , Disease Resistance , Estrogens/metabolism , Female , Gene Expression , Immunity, Innate , Inflammasomes/metabolism , Inflammation Mediators , Male , Mice , Microbial Viability/immunology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Sex Factors , Staphylococcal Skin Infections/genetics , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/metabolism , Virulence , Virulence Factors
13.
J Acquir Immune Defic Syndr ; 76(4): 431-437, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28825942

ABSTRACT

BACKGROUND: HIV-1 infection is associated with intestinal inflammation, changes in the enteric microbiota (dysbiosis), and intestinal epithelial cell damage. NKp44 innate lymphoid cells (ILCs) play an important role in epithelial barrier maintenance through the production of interleukin (IL)-22 but also display functional plasticity and can produce inflammatory cytokines [eg, interferon gamma (IFNγ)] in response to cytokine milieu and stimulatory signals. The objective of this pilot study was to enumerate frequencies of IL-22 and IFNγ-expressing colonic NKp44 ILCs during untreated, chronic HIV-1 infection. SETTING: A cross-sectional study was performed to compare numbers of cytokine-expressing ILCs in colonic biopsies of untreated, chronic HIV-1 infected (n = 22), and uninfected (n = 10) study participants. Associations between cytokine ILC and previously established measures of virological, immunological, and microbiome indices were analyzed. METHODS: Multicolor flow cytometry was used to measure the absolute number of colonic CD3NKp44CD56 ILCs expressing IL-22 or IFNγ after in vitro mitogenic stimulation. RESULTS: Numbers of colonic NKp44 ILCs that expressed IFNγ were significantly higher in HIV-1 infected versus uninfected persons and positively correlated with relative abundances of dysbiotic bacterial species in the Xanthomonadaceae and Prevotellaceae bacterial families and with colonic myeloid dendritic cell and T-cell activation. CONCLUSION: Higher numbers of inflammatory colonic ILCs during untreated chronic HIV-1 infection that associated with dysbiosis and colonic myeloid dendritic cell and T-cell activation suggest that inflammatory ILCs may contribute to gut mucosal inflammation and epithelial barrier breakdown, important features of HIV-1 mucosal pathogenesis.


Subject(s)
Dysbiosis/complications , Dysbiosis/immunology , HIV Infections/complications , HIV Infections/immunology , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Lymphocyte Activation , Colitis/complications , Colitis/immunology , Colitis/pathology , Cross-Sectional Studies , Dysbiosis/pathology , Flow Cytometry , HIV Infections/pathology , HIV Infections/virology , HIV-1/immunology , Humans , Pilot Projects
15.
J Cell Sci ; 129(19): 3562-3573, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27562068

ABSTRACT

TRIM proteins contribute to selective autophagy, a process whereby cells target specific cargo for autophagic degradation. In a previously reported screen, TRIM17 acted as a prominent inhibitor of bulk autophagy, unlike the majority of TRIMs, which had positive roles. Nevertheless, TRIM17 showed biochemical hallmarks of autophagy-inducing TRIMs. To explain this paradox, here, we investigated how TRIM17 inhibits selective autophagic degradation of a subset of targets while promoting degradation of others. We traced the inhibitory function of TRIM17 to its actions on the anti-autophagy protein Mcl-1, which associates with and inactivates Beclin 1. TRIM17 expression stabilized Mcl-1-Beclin-1 complexes. Despite its ability to inhibit certain types of selective autophagy, TRIM17 promoted the removal of midbodies, remnants of the cell division machinery that are known autophagy targets. The selective loss of anti-autophagy Mcl-1 from TRIM17-Beclin-1 complexes at midbodies correlated with the ability of TRIM17 to promote midbody removal. This study further expands the roles of TRIMs in regulating selective autophagy by showing that a single TRIM can, depending upon a target, either positively or negatively regulate autophagy.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Beclin-1/metabolism , Capsid/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , HIV-1/metabolism , HeLa Cells , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , RNA, Small Interfering/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
16.
J Immunol ; 196(1): 328-35, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26608923

ABSTRACT

Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung.


Subject(s)
Bacterial Proteins/metabolism , Hypolipoproteinemias/immunology , Lipoproteins, LDL/blood , Pneumonia, Staphylococcal/immunology , Quorum Sensing/immunology , Staphylococcus aureus/immunology , Trans-Activators/metabolism , Animals , Apolipoproteins B/immunology , Bacterial Proteins/genetics , Cell Line , Disease Models, Animal , Humans , Hypolipoproteinemias/genetics , Immunity, Innate/immunology , Lipoproteins, LDL/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Trans-Activators/genetics
17.
J Immunol ; 195(5): 2294-302, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26223653

ABSTRACT

Staphylococcus aureus is the primary cause of skin and skin structure infections (SSSIs) in the United States. α-Hemolysin (Hla), a pore-forming toxin secreted by S. aureus and a major contributor to tissue necrosis, prompts recruitment of neutrophils critical for host defense against S. aureus infections. However, the failure to clear apoptotic neutrophils can result in damage to host tissues, suggesting that mechanisms of neutrophil clearance are essential to limiting Hla-mediated dermonecrosis. We hypothesized that CD36, a scavenger receptor which facilitates recognition of apoptosing cells, would play a significant role in regulating Hla-mediated inflammation and tissue injury during S. aureus SSSI. In this study, we show that CD36 on macrophages negatively regulates dermonecrosis caused by Hla-producing S. aureus. This regulation is independent of bacterial burden, as CD36 also limits dermonecrosis caused by intoxication with sterile bacterial supernatant or purified Hla. Dermonecrotic lesions of supernatant intoxicated CD36(-/-) mice are significantly larger, with increased neutrophil accumulation and IL-1ß expression, compared with CD36(+/+) (wild-type) mice. Neutrophil depletion of CD36(-/-) mice prevents this phenotype, demonstrating the contribution of neutrophils to tissue injury in this model. Furthermore, administration of CD36(+/+) but not CD36(-/-) macrophages near the site of intoxication reduces dermonecrosis, IL-1ß production and neutrophil accumulation to levels seen in wild-type mice. This therapeutic effect is reversed by inhibiting actin polymerization in the CD36(+/+) macrophages, supporting a mechanism of action whereby CD36-dependent macrophage phagocytosis of apoptotic neutrophils regulates Hla-mediated dermonecrosis. Taken together, these data demonstrate that CD36 is essential for controlling the host innate response to S. aureus skin infection.


Subject(s)
Bacterial Toxins/immunology , CD36 Antigens/immunology , Hemolysin Proteins/immunology , Immunity, Innate/immunology , Skin Diseases, Bacterial/immunology , Staphylococcal Infections/immunology , Animals , Apoptosis/immunology , Blotting, Western , CD36 Antigens/genetics , CD36 Antigens/metabolism , Disease Models, Animal , Flow Cytometry , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis/immunology , Receptors, Scavenger/genetics , Receptors, Scavenger/immunology , Receptors, Scavenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin Diseases, Bacterial/genetics , Skin Diseases, Bacterial/microbiology , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology
18.
PLoS Pathog ; 9(2): e1003166, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23459693

ABSTRACT

Staphylococcus aureus contains an autoinducing quorum-sensing system encoded within the agr operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within agr has generated four agr specific groups, agr I-IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives agr signaling. Because agr signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize agr signaling. We determined whether two host defense factors that inhibit AIP1-induced agrI signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced agrIII signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against agrIII signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against S. aureus agrIII infection by binding the secreted signaling peptide, AIP3, and preventing expression of the agr-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes agr signaling by all four agr alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against agr signaling. These data reveal a novel role for oxLDL in host defense against S. aureus quorum-sensing signaling.


Subject(s)
Apolipoproteins B/metabolism , Bacterial Proteins/metabolism , Membrane Glycoproteins/physiology , NADPH Oxidases/physiology , Quorum Sensing/physiology , Receptors, LDL/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Trans-Activators/metabolism , Animals , Blotting, Western , Disease Models, Animal , Female , Gene Expression Regulation, Bacterial , Immunity, Innate , Immunoassay , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcal Infections/metabolism , Staphylococcal Infections/pathology , Surface Plasmon Resonance
19.
PLoS One ; 6(10): e23666, 2011.
Article in English | MEDLINE | ID: mdl-21984891

ABSTRACT

Niemann-Pick Disease, type C (NPC) is a fatal, neurodegenerative, lysosomal storage disorder. It is a rare disease with broad phenotypic spectrum and variable age of onset. These issues make it difficult to develop a universally accepted clinical outcome measure to assess urgently needed therapies. To this end, clinical investigators have defined emerging, disease severity scales. The average time from initial symptom to diagnosis is approximately 4 years. Further, some patients may not travel to specialized clinical centers even after diagnosis. We were therefore interested in investigating whether appropriately trained, community-based assessment of patient records could assist in defining disease progression using clinical severity scores. In this study we evolved a secure, step wise process to show that pre-existing medical records may be correctly assessed by non-clinical practitioners trained to quantify disease progression. Sixty-four undergraduate students at the University of Notre Dame were expertly trained in clinical disease assessment and recognition of major and minor symptoms of NPC. Seven clinical records, randomly selected from a total of thirty seven used to establish a leading clinical severity scale, were correctly assessed to show expected characteristics of linear disease progression. Student assessment of two new records donated by NPC families to our study also revealed linear progression of disease, but both showed accelerated disease progression, relative to the current severity scale, especially at the later stages. Together, these data suggest that college students may be trained in assessment of patient records, and thus provide insight into the natural history of a disease.


Subject(s)
Aptitude , Disease Progression , Education, Medical, Undergraduate , Educational Measurement , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/pathology , Students , Humans , Medical Records , Seasons , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...