Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biofabrication ; 14(3)2022 05 17.
Article in English | MEDLINE | ID: mdl-35481854

ABSTRACT

Scaffold-based regenerative strategies that emulate physical, biochemical, and mechanical properties of the native extracellular matrix (ECM) of the region of interest can influence cell growth and function. Existing ECM-mimicking scaffolds, including nanofiber (NF) mats, sponges, hydrogels, and NF-hydrogel composites are unable to simultaneously mimic typical composition, topography, pore size, porosity, and viscoelastic properties of healthy soft-tissue ECM. In this work, we used cryoelectrospinning to fabricate 3D porous scaffolds with minimal fibrous backbone, pore size and mechanical properties similar to soft-tissue connective tissue ECM. We used salivary glands as our soft tissue model and found the decellularized adult salivary gland (DSG) matrix to have a fibrous backbone, 10-30µm pores, 120 Pa indentation modulus, and ∼200 s relaxation half time. We used elastin and alginate as natural, compliant biomaterials and water as the solvent for cryoelectrospinning scaffolds to mimic the structure and viscoelasticity of the connective tissue ECM of the DSG. Process parameters were optimized to produce scaffolds with desirable topography and compliance similar to DSG, with a high yield of >100 scaffolds/run. Using water as solvent, rather than organic solvents, was critical to generate biocompatible scaffolds with desirable topography; further, it permitted a green chemistry fabrication process. Here, we demonstrate that cryoelectrospun scaffolds (CESs) support penetration of NIH 3T3 fibroblasts 250-450µm into the scaffold, cell survival, and maintenance of a stromal cell phenotype. Thus, we demonstrate that elastin-alginate CESs mimic many structural and functional properties of ECM and have potential for future use in regenerative medicine applications.


Subject(s)
Alginates , Elastin , Alginates/chemistry , Connective Tissue , Elastin/chemistry , Extracellular Matrix , Hydrogels , Solvents , Tissue Engineering , Tissue Scaffolds/chemistry , Water
2.
Cells ; 10(6)2021 06 19.
Article in English | MEDLINE | ID: mdl-34205257

ABSTRACT

Aligned collagen fibers provide topography for the rapid migration of single tumor cells (streaming migration) to invade the surrounding stroma, move within tumor nests towards blood vessels to intravasate and form distant metastases. Mechanisms of tumor cell motility have been studied extensively in the 2D context, but the mechanistic understanding of rapid single tumor cell motility in the in vivo context is still lacking. Here, we show that streaming tumor cells in vivo use collagen fibers with diameters below 3 µm. Employing 1D migration assays with matching in vivo fiber dimensions, we found a dependence of tumor cell motility on 1D substrate width, with cells moving the fastest and the most persistently on the narrowest 1D fibers (700 nm-2.5 µm). Interestingly, we also observed nuclear deformation in the absence of restricting extracellular matrix pores during high speed carcinoma cell migration in 1D, similar to the nuclear deformation observed in tumor cells in vivo. Further, we found that actomyosin machinery is aligned along the 1D axis and actomyosin contractility synchronously regulates cell motility and nuclear deformation. To further investigate the link between cell speed and nuclear deformation, we focused on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex proteins and SRF-MKL1 signaling, key regulators of mechanotransduction, actomyosin contractility and actin-based cell motility. Analysis of The Cancer Genome Atlas dataset showed a dramatic decrease in the LINC complex proteins SUN1 and SUN2 in primary tumor compared to the normal tissue. Disruption of LINC complex by SUN1 + 2 KD led to multi-lobular elongated nuclei, increased tumor cell motility and concomitant increase in F-actin, without affecting Lamin proteins. Mechanistically, we found that MKL1, an effector of changes in cellular G-actin to F-actin ratio, is required for increased 1D motility seen in SUN1 + 2 KD cells. Thus, we demonstrate a previously unrecognized crosstalk between SUN proteins and MKL1 transcription factor in modulating nuclear shape and carcinoma cell motility in an in vivo relevant 1D microenvironment.


Subject(s)
Cell Movement , Cell Nucleus/metabolism , Extracellular Matrix/metabolism , Mammary Neoplasms, Animal/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Cell Nucleus/pathology , Extracellular Matrix/pathology , Female , Mammary Neoplasms, Animal/pathology , Mice, SCID , Rats
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 227: 117670, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31715385

ABSTRACT

Nanofiber scaffolds are used in bioengineering for functional support of growing tissues. To fine tune nanofiber properties for specific applications, it is often necessary to characterize the spatial distribution of their chemical content. Raman spectroscopy is a common tool used to characterize chemical composition of various materials, including nanofibers. In combination with a confocal microscope, it allows simultaneous mapping of both spectral and spatial features of inhomogeneous structures, also known as hyperspectral imaging. However, such mapping is usually performed on microscopic scale, due to the resolution of the scanning system being diffraction limited (about 0.2-0.5 micron, depending on the excitation wavelength). We present an application of confocal Raman microscopy to hyperspectral mapping of nanofibers, where nanoscale features are resolved by means of oversampling and extensive data processing, including Singular Value Decomposition and Classical Least Squares decomposition techniques. Oversampling and data processing facilitated evaluation of the spatial distribution of different chemical components within multi-component nanofibers.


Subject(s)
Microscopy, Confocal , Nanofibers/chemistry , Tissue Engineering , Decanoates/chemistry , EGF Family of Proteins/metabolism , Emulsions/chemistry , Glycerol/analogs & derivatives , Glycerol/chemistry , Nanofibers/ultrastructure , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polymers/chemistry , Spectrum Analysis, Raman
4.
Cells ; 7(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572633

ABSTRACT

The transcoelomic metastasis pathway is an alternative to traditional lymphatic/hematogenic metastasis. It is most frequently observed in ovarian cancer, though it has been documented in colon and gastric cancers as well. In transcoelomic metastasis, primary tumor cells are released into the abdominal cavity and form cell aggregates known as spheroids. These spheroids travel through the peritoneal fluid and implant at secondary sites, leading to the formation of new tumor lesions in the peritoneal lining and the organs in the cavity. Models of this process that incorporate the fluid shear stress (FSS) experienced by these spheroids are few, and most have not been fully characterized. Proposed herein is the adaption of a known dynamic cell culture system, the orbital shaker, to create an environment with physiologically-relevant FSS for spheroid formation. Experimental conditions (rotation speed, well size and cell density) were optimized to achieve physiologically-relevant FSS while facilitating the formation of spheroids that are also of a physiologically-relevant size. The FSS improves the roundness and size consistency of spheroids versus equivalent static methods and are even comparable to established high-throughput arrays, while maintaining nearly equivalent viability. This effect was seen in both highly metastatic and modestly metastatic cell lines. The spheroids generated using this technique were fully amenable to functional assays and will allow for better characterization of FSS's effects on metastatic behavior and serve as a drug screening platform. This model can also be built upon in the future by adding more aspects of the peritoneal microenvironment, further enhancing its in vivo relevance.

5.
Nanomedicine ; 14(7): 1999-2008, 2018 10.
Article in English | MEDLINE | ID: mdl-29665440

ABSTRACT

Fundamental challenges of targeting specific brain regions for treatment using pharmacotherapeutic nanoparticle (NP) carriers include circumventing the blood-brain-barrier (BBB) and tracking delivery. Angiopep-2 (AP2) has been shown to facilitate the transport of large macromolecules and synthetic nanoparticles across the BBB. Thus, conjugation of AP2 to an MS2 bacteriophage based NP should also permit transport across the BBB. We have fabricated and tested a novel MS2 capsid-based NP conjugated to the ligand AP2. The reaction efficiency was determined to be over 70%, with up to two angiopep-2 conjugated per MS2 capsid protein. When linked with a porphyrin ring, manganese (Mn2+) remained stable within MS2 and was MRI detectable. Nanoparticles were introduced intracerebroventricularly or systemically. Systemic delivery yielded dose dependent, non-toxic accumulation of NPs in the midbrain. Design of a multifunctional MRI compatible NP platform provides a significant step forward for the diagnosis and treatment of intractable brain conditions, such as tinnitus.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , Levivirus/chemistry , Magnetic Resonance Imaging , Nanoparticles/administration & dosage , Peptides/chemistry , Tinnitus/drug therapy , Animals , Biological Transport , Drug Carriers , Drug Delivery Systems , Male , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley
6.
Int J Mol Sci ; 19(4)2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29596382

ABSTRACT

Engineering salivary glands is of interest due to the damaging effects of radiation therapy and the autoimmune disease Sjögren's syndrome on salivary gland function. One of the current problems in tissue engineering is that in vitro studies often fail to predict in vivo regeneration due to failure of cells to interact with scaffolds and of the single cell types that are typically used for these studies. Although poly (lactic co glycolic acid) (PLGA) nanofiber scaffolds have been used for in vitro growth of epithelial cells, PLGA has low compliance and cells do not penetrate the scaffolds. Using a core-shell electrospinning technique, we incorporated poly (glycerol sebacate) (PGS) into PLGA scaffolds to increase the compliance and decrease hydrophobicity. PGS/PLGA scaffolds promoted epithelial cell penetration into the scaffold and apical localization of tight junction proteins, which is necessary for epithelial cell function. Additionally, co-culture of the salivary epithelial cells with NIH3T3 mesenchymal cells on PGS/PLGA scaffolds facilitated epithelial tissue reorganization and apical localization of tight junction proteins significantly more than in the absence of the mesenchyme. These data demonstrate the applicability of PGS/PLGA nanofibers for epithelial cell self-organization and facilitation of co-culture cell interactions that promote tissue self-organization in vitro.


Subject(s)
Decanoates/chemistry , Epithelial Cells , Glycerol/analogs & derivatives , Lactic Acid/chemistry , Nanofibers/chemistry , Polyglycolic Acid/chemistry , Polymers/chemistry , Salivary Glands , Tissue Scaffolds/chemistry , Animals , Cell Line, Transformed , Coculture Techniques , Epithelial Cells/cytology , Epithelial Cells/metabolism , Glycerol/chemistry , Mice , NIH 3T3 Cells , Polylactic Acid-Polyglycolic Acid Copolymer , Salivary Glands/cytology , Salivary Glands/metabolism , Tight Junctions/metabolism , Tissue Engineering
7.
J Cell Sci ; 131(4)2018 02 20.
Article in English | MEDLINE | ID: mdl-29361536

ABSTRACT

Epithelial progenitor cells are dependent upon a complex 3D niche to promote their proliferation and differentiation during development, which can be recapitulated in organoids. The specific requirements of the niche remain unclear for many cell types, including the proacinar cells that give rise to secretory acinar epithelial cells that produce saliva. Here, using ex vivo cultures of E16 primary mouse submandibular salivary gland epithelial cell clusters, we investigated the requirement for mesenchymal cells and other factors in producing salivary organoids in culture. Native E16 salivary mesenchyme, but not NIH3T3 cells or mesenchymal cell conditioned medium, supported robust protein expression of the progenitor marker Kit and the acinar/proacinar marker AQP5, with a requirement for FGF2 expression by the mesenchyme. Enriched salivary epithelial clusters that were grown in laminin-enriched basement membrane extract or laminin-111 together with exogenous FGF2, but not with EGF, underwent morphogenesis to form organoids that displayed robust expression of AQP5 in terminal buds. Knockdown of FGF2 in the mesenchyme or depletion of mesenchyme cells from the organoids significantly reduced AQP5 levels even in the presence of FGF2, suggesting a requirement for autocrine FGF2 signaling in the mesenchyme cells for AQP5 expression. We conclude that basement membrane proteins and mesenchyme cells function as niche factors in salivary organoids.


Subject(s)
Aquaporin 5/genetics , Fibroblast Growth Factor 2/genetics , Laminin/genetics , Salivary Glands/metabolism , Acinar Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Epidermal Growth Factor/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mesoderm/growth & development , Mesoderm/metabolism , Mice , NIH 3T3 Cells , Organoids/growth & development , Organoids/metabolism , Primary Cell Culture , Saliva/metabolism , Salivary Glands/growth & development , Stem Cells/metabolism , Submandibular Gland/growth & development , Submandibular Gland/metabolism
8.
Biosensors (Basel) ; 7(3)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28858219

ABSTRACT

Nanofibrous scaffolds provide high surface area for cell attachment, and resemble the structure of the collagen fibers which naturally occur in the basement membrane and extracellular matrix. A label free and non-destructive method of assessing the interaction of cell tissue and scaffolds aids in the ability to discern the effective quality and magnitude of any scaffold modifications. Impedance cell spectroscopy is a biosensing method that employs a functional approach to assessing the cell monolayer. The electrical impedance barrier function of a cell monolayer represents the level of restriction to diffusion of charged species between all adjacent cells across an entire contiguous cellular monolayer. The impedance signals from many individual paracellular pathways contribute to the bulk measurement of the whole monolayer barrier function. However, the scaffold substrate must be entirely porous in order to be used with electrochemical cell impedance spectroscopy (ECIS) and cells must be closely situated to the electrodes. For purposes of evaluating cell-scaffold constructs for tissue engineering, non-invasive evaluation of cell properties while seeded on scaffolds is critical. A Transwell-type assay makes a measurement across a semi-permeable membrane, using electrodes placed on opposing sides of the membrane immersed in fluid. It was found that by suspending a nanofiber scaffold across a Transwell aperture, it is possible to integrate a fully functional nanofiber tissue scaffold with the ECIS Transwell apparatus. Salivary epithelial cells were grown on the nanofiber scaffolds and tight junction formation was evaluated using ECIS measurements in parallel with immunostaining and confocal imaging. The trans-epithelial resistance increased coordinate with cell coverage, culminating with a cell monolayer, at which point the tight junction proteins assemble and strengthen, reaching the peak signal. These studies demonstrate that ECIS can be used to evaluate tight junction formation in cells grown on nanofiber scaffolds and on effects of scaffold conditions on cells, thus providing useful biological feedback to inform superior scaffold designs.


Subject(s)
Biosensing Techniques/methods , Electric Impedance , Epithelial Cells/cytology , Nanostructures/chemistry , Tissue Scaffolds/chemistry , Animals , Biosensing Techniques/instrumentation , Cell Line , Epithelial Cells/metabolism , Mice , Tight Junctions/metabolism
9.
Acta Biomater ; 62: 116-127, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28801269

ABSTRACT

Development of electrospun nanofibers that mimic the structural, mechanical and biochemical properties of natural extracellular matrices (ECMs) is a promising approach for tissue regeneration. Electrospun fibers of synthetic polymers partially mimic the topography of the ECM, however, their high stiffness, poor hydrophilicity and lack of in vivo-like biochemical cues is not optimal for epithelial cell self-organization and function. In search of a biomimetic scaffold for salivary gland tissue regeneration, we investigated the potential of elastin, an ECM protein, to generate elastin hybrid nanofibers that have favorable physical and biochemical properties for regeneration of the salivary glands. Elastin was introduced to our previously developed poly-lactic-co-glycolic acid (PLGA) nanofiber scaffolds by two methods, blend electrospinning (EP-blend) and covalent conjugation (EP-covalent). Both methods for elastin incorporation into the nanofibers improved the wettability of the scaffolds while only blend electrospinning of elastin-PLGA nanofibers and not surface conjugation of elastin to PLGA fibers, conferred increased elasticity to the nanofibers measured by Young's modulus. After two days, only the blend electrospun nanofiber scaffolds facilitated epithelial cell self-organization into cell clusters, assessed with nuclear area and nearest neighbor distance measurements, leading to the apicobasal polarization of salivary gland epithelial cells after six days, which is vital for cell function. This study suggests that elastin electrospun nanofiber scaffolds have potential application in regenerative therapies for salivary glands and other epithelial organs. STATEMENT OF SIGNIFICANCE: Regenerating the salivary glands by mimicking the extracellular matrix (ECM) is a promising approach for long term treatment of salivary gland damage. Despite their topographic similarity to the ECM, electrospun fibers of synthetic polymers lack the biochemical complexity, elasticity and hydrophilicity of the ECM. Elastin is an ECM protein abundant in the salivary glands and responsible for tissue elasticity. Although it's widely used for tissue regeneration of other organs, little is known about its utility in regenerating the salivary tissue. This study describes the use of elastin to improve the elasticity, hydrophilicity and biochemical complexity of synthetic nanofibers and its potential in directing in vivo-like organization of epithelial salivary cells which helps the design of efficient salivary gland regeneration scaffolds.


Subject(s)
Cell Polarity , Elastin/chemistry , Epithelial Cells/metabolism , Lactic Acid/chemistry , Nanofibers/chemistry , Polyglycolic Acid/chemistry , Salivary Glands/metabolism , Tissue Scaffolds/chemistry , Animals , Cell Line, Transformed , Epithelial Cells/cytology , Mice , Polylactic Acid-Polyglycolic Acid Copolymer , Salivary Glands/cytology
10.
Biomed Opt Express ; 8(2): 1025-1035, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28271000

ABSTRACT

Core/shell nanofibers are becoming increasingly popular for applications in tissue engineering. Nanofibers alone provide surface topography and increased surface area that promote cellular attachment; however, core/shell nanofibers provide the versatility of incorporating two materials with different properties into one. Such synthetic materials can provide the mechanical and degradation properties required to make a construct that mimics in vivo tissue. Many variations of these fibers can be produced. The challenge lies in the ability to characterize and quantify these nanofibers post fabrication. We developed a non-invasive method for the composition characterization and quantification at the nanoscale level of fibers using Confocal Raman microscopy. The biodegradable/biocompatible nanofibers, Poly (glycerol-sebacate)/Poly (lactic-co-glycolic) (PGS/PLGA), were characterized as a part of a fiber scaffold to quickly and efficiently analyze the quality of the substrate used for tissue engineering.

11.
Nat Cell Biol ; 19(2): 120-132, 2017 02.
Article in English | MEDLINE | ID: mdl-28114271

ABSTRACT

Hypoxia is a poor-prognosis microenvironmental hallmark of solid tumours, but it is unclear how it influences the fate of disseminated tumour cells (DTCs) in target organs. Here we report that hypoxic HNSCC and breast primary tumour microenvironments displayed upregulation of key dormancy (NR2F1, DEC2, p27) and hypoxia (GLUT1, HIF1α) genes. Analysis of solitary DTCs in PDX and transgenic mice revealed that post-hypoxic DTCs were frequently NR2F1hi/DEC2hi/p27hi/TGFß2hi and dormant. NR2F1 and HIF1α were required for p27 induction in post-hypoxic dormant DTCs, but these DTCs did not display GLUT1hi expression. Post-hypoxic DTCs evaded chemotherapy and, unlike ER- breast cancer cells, post-hypoxic ER+ breast cancer cells were more prone to enter NR2F1-dependent dormancy. We propose that primary tumour hypoxic microenvironments give rise to a subpopulation of dormant DTCs that evade therapy. These post-hypoxic dormant DTCs may be the source of disease relapse and poor prognosis associated with hypoxia.


Subject(s)
Bone Marrow/metabolism , Breast Neoplasms/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/pathology , COUP Transcription Factor I/metabolism , Cell Hypoxia , Cell Line, Tumor , Cell Separation/methods , Humans , Mice , Neoplasm Metastasis , Phenotype
12.
Intravital ; 5(2)2016.
Article in English | MEDLINE | ID: mdl-27790386

ABSTRACT

The tumor microenvironment is recognized as playing a significant role in the behavior of tumor cells and their progression to metastasis. However, tools to manipulate the tumor microenvironment directly, and image the consequences of this manipulation with single cell resolution in real time in vivo, are lacking. We describe here a method for the direct, local manipulation of microenvironmental parameters through the use of an implantable Induction Nano Intravital Device (iNANIVID) and simultaneous in vivo visualization of the results at single-cell resolution. As a proof of concept, we deliver both a sustained dose of EGF to tumor cells while intravital imaging their chemotactic response as well as locally induce hypoxia in defined microenvironments in solid tumors.

13.
Tissue Eng Part C Methods ; 22(11): 1028-1037, 2016 11.
Article in English | MEDLINE | ID: mdl-27758134

ABSTRACT

Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.


Subject(s)
Epithelial Cells/metabolism , Image Processing, Computer-Assisted/methods , Salivary Glands/metabolism , Software , Zonula Occludens-1 Protein/metabolism , Cell Differentiation , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Humans , Microscopy, Confocal , Nanofibers/chemistry , Salivary Glands/cytology , Salivary Glands/ultrastructure , Tissue Engineering , Tissue Scaffolds
14.
EBioMedicine ; 13: 146-156, 2016 11.
Article in English | MEDLINE | ID: mdl-27743905

ABSTRACT

Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Collagen/metabolism , Energy Metabolism , Extracellular Matrix/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Citric Acid Cycle , Female , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glutamine/metabolism , Humans , Mitochondria/metabolism , Models, Biological , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Tumor Microenvironment
15.
Sci Rep ; 6: 25086, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27220760

ABSTRACT

Macrophage infiltration and recruitment in breast tumors has been correlated with poor prognosis in breast cancer patients and has been linked to tumor cell dissemination. Much of our understanding comes from animal models in which macrophages are labeled by expression of an extrinsic fluorophore. However, conventional extrinsic fluorescence labeling approaches are not readily applied to human tissue and clinical use. We report a novel strategy that exploits endogenous fluorescence from the metabolic co-factors NADH and FAD with quantitation from Fluorescence Lifetime Imaging Microscopy (FLIM) as a means to non-invasively identify tumor-associated macrophages in the intact mammary tumor microenvironment. Macrophages were FAD(HI) and demonstrated a glycolytic-like NADH-FLIM signature that was readily separated from the intrinsic fluorescence signature of tumor cells. This non-invasive quantitative technique provides a unique ability to discern specific cell types based upon their metabolic signatures without the use of exogenous fluorescent labels. Not only does this provide high resolution temporal and spatial views of macrophages in live animal breast cancer models, this approach can be extended to other animal disease models where macrophages are implicated and has potential for clinical applications.


Subject(s)
Breast Neoplasms/pathology , Macrophages/cytology , Microscopy, Fluorescence/methods , Optical Imaging/methods , Animals , Female , Flavin-Adenine Dinucleotide/analysis , Humans , NAD/analysis
16.
Sensors (Basel) ; 15(7): 17483-94, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26205266

ABSTRACT

Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 µm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that.

17.
Hear Res ; 311: 49-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24583078

ABSTRACT

Manganese enhanced magnetic resonance imaging (MEMRI) is a method used primarily in basic science experiments to advance the understanding of information processing in central nervous system pathways. With this mechanistic approach, manganese (Mn(2+)) acts as a calcium surrogate, whereby voltage-gated calcium channels allow for activity driven entry of Mn(2+) into neurons. The detection and quantification of neuronal activity via Mn(2+) accumulation is facilitated by "hemodynamic-independent contrast" using high resolution MRI scans. This review emphasizes initial efforts to-date in the development and application of MEMRI for evaluating tinnitus (the perception of sound in the absence of overt acoustic stimulation). Perspectives from leaders in the field highlight MEMRI related studies by comparing and contrasting this technique when tinnitus is induced by high-level noise exposure and salicylate administration. Together, these studies underscore the considerable potential of MEMRI for advancing the field of auditory neuroscience in general and tinnitus research in particular. Because of the technical and functional gaps that are filled by this method and the prospect that human studies are on the near horizon, MEMRI should be of considerable interest to the auditory research community. This article is part of a Special Issue entitled .


Subject(s)
Auditory Perception , Brain/metabolism , Calcium Channels/metabolism , Contrast Media , Magnetic Resonance Imaging/methods , Manganese , Tinnitus/diagnosis , Animals , Brain/physiopathology , Contrast Media/adverse effects , Contrast Media/metabolism , Disease Models, Animal , Humans , Ion Channel Gating , Manganese/adverse effects , Manganese/metabolism , Membrane Potentials , Noise , Predictive Value of Tests , Salicylates , Tinnitus/etiology , Tinnitus/metabolism , Tinnitus/physiopathology , Tinnitus/psychology
18.
Biomaterials ; 34(28): 6773-84, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23777914

ABSTRACT

There is a need for an artificial salivary gland as a long-term remedy for patients suffering from salivary hypofunction, a leading cause of chronic xerostomia (dry mouth). Current salivary gland tissue engineering approaches are limited in that they either lack sufficient physical cues and surface area needed to facilitate epithelial cell differentiation, or they fail to provide a mechanism for assembling an interconnected branched network of cells. We have developed highly-ordered arrays of curved hemispherical "craters" in polydimethylsiloxane (PDMS) using wafer-level integrated circuit (IC) fabrication processes, and lined them with electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers, designed to mimic the three-dimensional (3-D) in vivo architecture of the basement membrane surrounding spherical acini of salivary gland epithelial cells. These micropatterned scaffolds provide a method for engineering increased surface area and were additionally investigated for their ability to promote cell polarization. Two immortalized salivary gland cell lines (SIMS, ductal and Par-C10, acinar) were cultured on fibrous crater arrays of various radii and compared with those grown on flat PLGA nanofiber substrates, and in 3-D Matrigel. It was found that by increasing crater curvature, the average height of the cell monolayer of SIMS cells and to a lesser extent, Par-C10 cells, increased to a maximum similar to that seen in cells grown in 3-D Matrigel. Increasing curvature resulted in higher expression levels of tight junction protein occludin in both cell lines, but did not induce a change in expression of adherens junction protein E-cadherin. Additionally, increasing curvature promoted polarity of both cell lines, as a greater apical localization of occludin was seen in cells on substrates of higher curvature. Lastly, substrate curvature increased expression of the water channel protein aquaporin-5 (Aqp-5) in Par-C10 cells, suggesting that curved nanofiber substrates are more suitable for promoting differentiation of salivary gland cells.


Subject(s)
Lactic Acid/chemistry , Nanofibers/chemistry , Polymers/chemistry , Salivary Glands/cytology , Tissue Engineering , Animals , Blotting, Western , Cell Differentiation/physiology , Cells, Cultured , Immunohistochemistry , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Polyesters , Rats
19.
Dose Response ; 11(1): 29-40, 2013.
Article in English | MEDLINE | ID: mdl-23550222

ABSTRACT

MTLn3 cells derived from mouse mammary epithelium are known to be highly malignant and are resistant to both radio- and chemo-therapy. We exposed MTLn3 cells to various doses of inorganic Arsenic trioxide (As2O3) in combination with ionizing radiation. Cells were treated with a series of As2O3 concentrations ranging from 20 µM to 1.22 nM for 8 hour, 24 hour and 48 hour periods. Post-treated cell proliferation was quantified by measuring mitochondrial activity and DNA analysis. Cells exposed to radiation and As2O3 at concentration greater than 1.25 µM showed apoptosis and radiations alone treated cells were statistically not different from the control. Hormesis was observed for As2O3 concentrations in the range of 0.078 µM to 0.625 µM while the combined chemo and radiation treatments of the cells did not affect the hormetic effect. We have demonstrated that As2O3 (in the presence and absence of ionizing radiation) in specific low concentrations induced apoptosis in the otherwise chemoresistant cancer cells. This low concentration-mediated cell death is immediately followed by a surge in cell survival. Low dosing dosimetry is highly desirable in metronomic therapy however, it has a narrow window since necrosis, hormesis, apoptosis and other dose-dependent biological processes take place in this region. Further quantifiable dosimetry is highly desired for routine clinical practice.

20.
Biomaterials ; 33(33): 8372-82, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22938763

ABSTRACT

Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin, but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types.


Subject(s)
Epithelial Cells/cytology , Nanofibers/chemistry , Salivary Glands/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Polarity/physiology , Cell Proliferation , Immunoblotting , Immunohistochemistry , Lactic Acid/chemistry , Microscopy, Confocal , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...