Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Alzheimers Dement ; 19(6): 2239-2252, 2023 06.
Article in English | MEDLINE | ID: mdl-36448627

ABSTRACT

INTRODUCTION: The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS: To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS: At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION: These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS: Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.


Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Infant , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microglia/metabolism , Mice, Transgenic , Plaque, Amyloid/metabolism , Disease Models, Animal , Amyloid beta-Peptides/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
2.
Sci Adv ; 7(2)2021 01.
Article in English | MEDLINE | ID: mdl-33523961

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing 1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We identify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-ß neuroinflammation, synaptic signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A We further demonstrate that variations between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized human trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medicine for this devastating disease.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Humans , Mice , RNA/metabolism , Sequence Analysis, RNA , tau Proteins/metabolism
3.
Acta Neuropathol Commun ; 6(1): 69, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30049279

ABSTRACT

Expression of human Apolipoprotein E (APOE) modulates the inflammatory response in an isoform specific manner, with APOE4 isoform eliciting a stronger pro-inflammatory response, suggesting a possible mechanism for worse outcome following traumatic brain injury (TBI). APOE lipidation and stability is modulated by ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein that transports lipids and cholesterol onto APOE. We examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi followed by genome-wide differential gene expression analysis. We found that TBI significantly impacted unique transcripts within each group, however, the proportion of unique transcripts was highest in E4/Abca1+/- mice. Additionally, we found that Abca1 haplodeficiency increased the expression of microglia sensome genes among only APOE4 injured mice, a response not seen in injured APOE3 mice, nor in either group of sham-treated mice. To identify gene networks, or modules, correlated to TBI, APOE isoform and Abca1 haplodeficiency, we used weighted gene co-expression network analysis (WGCNA). The module that positively correlated to TBI groups was associated with immune response and featured hub genes that were microglia-specific, including Trem2, Tyrobp, Cd68 and Hexb. The modules positively correlated with APOE4 isoform and negatively to Abca1 haplodeficient mice represented "protein translation" and "oxidation-reduction process", respectively. Our results reveal E4/Abca1+/- TBI mice have a distinct response to injury, and unique gene networks are associated with APOE isoform, Abca1 insufficiency and injury.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , Apolipoproteins E/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Brain/metabolism , Gene Expression Regulation/genetics , ATP Binding Cassette Transporter 1/genetics , Animals , Apolipoproteins E/genetics , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Gene Regulatory Networks , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 152-161, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29038051

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that is influenced by genetic and environmental risk factors, such as inheritance of ε4 allele of APOE (APOE4), sex and diet. Here, we examined the effect of high fat diet (HFD) on amyloid pathology and expression profile in brains of AD model mice expressing human APOE isoforms (APP/E3 and APP/E4 mice). APP/E3 and APP/E4 mice were fed HFD or Normal diet for 3months. We found that HFD significantly increased amyloid plaques in male and female APP/E4, but not in APP/E3 mice. To identify differentially expressed genes and gene-networks correlated to diet, APOE isoform and sex, we performed RNA sequencing and applied Weighted Gene Co-expression Network Analysis. We determined that the immune response network with major hubs Tyrobp/DAP12, Csf1r, Tlr2, C1qc and Laptm5 correlated significantly and positively to the phenotype of female APP/E4-HFD mice. Correspondingly, we found that in female APP/E4-HFD mice, microglia coverage around plaques, particularly of larger size, was significantly reduced. This suggests altered containment of the plaque growth and sex-dependent vulnerability in response to diet. The results of our study show concurrent impact of diet, APOE isoform and sex on the brain transcriptome and AD-like phenotype.


Subject(s)
Apolipoproteins E/genetics , Diet , Immunity, Innate/physiology , Plaque, Amyloid/immunology , Plaque, Amyloid/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Gene Regulatory Networks , Gene-Environment Interaction , Genotype , Immunity, Innate/genetics , Male , Mice , Mice, Transgenic , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Sex Factors , Systems Biology/methods
5.
Sci Rep ; 7(1): 4307, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28655926

ABSTRACT

We examined the effect of chronic high fat diet (HFD) on amyloid deposition and cognition of 12-months old APP23 mice, and correlated the phenotype to brain transcriptome and lipidome. HFD significantly increased amyloid plaques and worsened cognitive performance compared to mice on normal diet (ND). RNA-seq results revealed that in HFD mice there was an increased expression of genes related to immune response, such as Trem2 and Tyrobp. We found a significant increase of TREM2 immunoreactivity in the cortex in response to HFD, most pronounced in female mice that correlated to the amyloid pathology. Down-regulated by HFD were genes related to neuron projections and synaptic transmission in agreement to the significantly deteriorated neurite morphology and cognition in these mice. To examine the effect of the diet on the brain lipidome, we performed Shotgun Lipidomics. While there was no difference in the total amounts of phospholipids of each class, we revealed that the levels of 24 lipid sub-species in the brain were significantly modulated by HFD. Network visualization of correlated lipids demonstrated overall imbalance with most prominent effect on cardiolipin molecular sub-species. This integrative approach demonstrates that HFD elicits a complex response at molecular, cellular and system levels in the CNS.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Brain/metabolism , Diet, High-Fat/adverse effects , Lipid Metabolism , Metabolome , Phenotype , Transcriptome , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Animals , Apoptosis , Brain/pathology , Cell Differentiation/genetics , Cognition , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Maze Learning , Mice , Mice, Transgenic , Mitochondria/metabolism , Neurons/cytology , Neurons/metabolism , Plaque, Amyloid/pathology , Protein Aggregation, Pathological
6.
Neurobiol Dis ; 105: 1-14, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28502803

ABSTRACT

Traumatic brain injury (TBI) is strongly linked to an increased risk of developing dementia, including chronic traumatic encephalopathy and possibly Alzheimer's disease (AD). APOEε4 allele of human Apolipoprotein E (APOE) gene is the major genetic risk factor for late onset AD and has been associated with chronic traumatic encephalopathy and unfavorable outcome following TBI. To determine if there is an APOE isoform-specific response to TBI we performed controlled cortical impact on 3-month-old mice expressing human APOE3 or APOE4 isoforms. Following injury, we used several behavior paradigms to test for anxiety and learning and found that APOE3 and APOE4 targeted replacement mice demonstrate cognitive impairments following moderate TBI. Transcriptional profiling 14days following injury revealed a significant effect of TBI, which was similar in both genotypes. Significantly upregulated by injury in both genotypes were mRNA expression and protein level of ABCA1 transporter and APOJ, but not APOE. To identify gene-networks correlated to injury and APOE isoform, we performed Weighted Gene Co-expression Network Analysis. We determined that the network mostly correlated to TBI in animals expressing both isoforms is immune response with major hub genes including Trem2, Tyrobp, Clec7a and Cd68. We also found a significant increase of TREM2, IBA-1 and GFAP protein levels in the brains of injured mice. We identified a network representing myelination that correlated significantly with APOE isoform in both injury groups. This network was significantly enriched in oligodendrocyte signature genes, such as Mbp and Plp1. Our results demonstrate unique and distinct gene networks at this acute time point for injury and APOE isoform, as well as a network driven by APOE isoform across TBI groups.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apolipoproteins E/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/physiopathology , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Up-Regulation/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Anxiety/etiology , Apolipoproteins E/genetics , Astrocytes/metabolism , Astrocytes/pathology , Brain Injuries, Traumatic/complications , Cognition Disorders/etiology , Cognition Disorders/genetics , Disease Models, Animal , Gene Regulatory Networks , Glial Fibrillary Acidic Protein/metabolism , Humans , Maze Learning/physiology , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Principal Component Analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Receptors, Immunologic/genetics
7.
J Alzheimers Dis ; 56(3): 1075-1085, 2017.
Article in English | MEDLINE | ID: mdl-28106559

ABSTRACT

ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoproteins and regulates the generation of high density lipoproteins. Previously, we have shown that lack of Abca1 significantly increases amyloid deposition and cognitive deficits in Alzheimer's disease model mice expressing human amyloid-ß protein precursor (APP). The goal of this study was to determine if ABCA1 plays a role in memory deficits caused by amyloid-ß (Aß) oligomers and examine neurite architecture of pyramidal hippocampal neurons. Our results confirm previous findings that Abca1 deficiency significantly impairs spatial memory acquisition and retention in the Morris water maze and long-term memory in novel object recognition of APP transgenic mice at a stage of early amyloid pathology. Neither test demonstrated a significant difference between Abca1ko and wild-type (WT) mice. We also examined the effect of intra-hippocampal infused Aß oligomers on cognitive performance of Abca1ko mice, compared to control infusion of scrambled Aß peptide. Age-matched WT mice undergoing the same infusions were also used as controls. In this model system, we found a statistically significant difference between WT and Abca1ko mice infused with scrambled Aß, suggesting that Abca1ko mice are vulnerable to the effect of mild stresses. Moreover, examination of neurite architecture in the hippocampi revealed a significant decrease in neurite length, number of neurite segments, and branches in Abca1ko mice when compared to WT mice. We conclude that mice lacking ABCA1 have basal cognitive deficits that prevent them from coping with additional stressors, which is in part due to impairment of neurite morphology in the hippocampus.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , Cognition Disorders/metabolism , Cognition Disorders/pathology , Dendrites/metabolism , Dendrites/pathology , ATP Binding Cassette Transporter 1/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Size , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Maze Learning/physiology , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Recognition, Psychology/physiology , Spatial Memory/physiology
8.
Brain ; 138(Pt 12): 3699-715, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26510953

ABSTRACT

UNLABELLED: ATP binding cassette transporter A1 (encoded by ABCA1) regulates cholesterol efflux from cells to apolipoproteins A-I and E (ApoA-I and APOE; encoded by APOA1 and APOE, respectively) and the generation of high density lipoproteins. In Abca1 knockout mice (Abca1(ko)), high density lipoproteins and ApoA-I are virtually lacking, and total APOE and APOE-containing lipoproteins in brain substantially decreased. As the ε4 allele of APOE is the major genetic risk factor for late-onset Alzheimer's disease, ABCA1 role as a modifier of APOE lipidation is of significance for this disease. Reportedly, Abca1 deficiency in mice expressing human APP accelerates amyloid deposition and behaviour deficits. We used APP/PS1dE9 mice crossed to Apoe and Apoa1 knockout mice to generate Apoe/Apoa1 double-knockout mice. We hypothesized that Apoe/Apoa1 double-knockout mice would mimic the phenotype of APP/Abca1(ko) mice in regards to amyloid plaques and cognitive deficits. Amyloid pathology, peripheral lipoprotein metabolism, cognitive deficits and dendritic morphology of Apoe/Apoa1 double-knockout mice were compared to APP/Abca1(ko), APP/PS1dE9, and single Apoa1 and Apoe knockouts. Contrary to our prediction, the results demonstrate that double deletion of Apoe and Apoa1 ameliorated the amyloid pathology, including amyloid plaques and soluble amyloid. In double knockout mice we show that (125)I-amyloid-ß microinjected into the central nervous system cleared at a rate twice faster compared to Abca1 knockout mice. We tested the effect of Apoe, Apoa1 or Abca1 deficiency on spreading of exogenous amyloid-ß seeds injected into the brain of young pre-depositing APP mice. The results show that lack of Abca1 augments dissemination of exogenous amyloid significantly more than the lack of Apoe. In the periphery, Apoe/Apoa1 double-knockout mice exhibited substantial atherosclerosis and very high levels of low density lipoproteins compared to APP/PS1dE9 and APP/Abca1(ko). Plasma level of amyloid-ß42 measured at several time points for each mouse was significantly higher in Apoe/Apoa1 double-knockout then in APP/Abca1(ko) mice. This result demonstrates that mice with the lowest level of plasma lipoproteins, APP/Abca1(ko), have the lowest level of peripheral amyloid-ß. Unexpectedly, and independent of amyloid pathology, the deletion of both apolipoproteins worsened behaviour deficits of double knockout mice and their performance was undistinguishable from those of Abca1 knockout mice. Finally we observed that the dendritic complexity in the CA1 region of hippocampus but not in CA2 is significantly impaired by Apoe/Apoa1 double deletion as well as by lack of ABCA1. IN CONCLUSION: (i) plasma lipoproteins may affect amyloid-ß clearance from the brain by the 'peripheral sink' mechanism; and (ii) deficiency of brain APOE-containing lipoproteins is of significance for dendritic complexity and cognition.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Apolipoprotein A-I/deficiency , Apolipoproteins E/deficiency , Cognition Disorders/genetics , Cognition Disorders/psychology , Gene Deletion , Plaque, Amyloid/genetics , ATP Binding Cassette Transporter 1/genetics , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacokinetics , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoprotein A-I/genetics , Apolipoproteins E/genetics , Brain/metabolism , Brain/pathology , Cognition Disorders/pathology , Female , Hippocampus/metabolism , Lipoproteins/blood , Male , Mice , Mice, Knockout , Microinjections , Neurites/pathology , Peptide Fragments/administration & dosage , Peptide Fragments/blood , Peptide Fragments/metabolism , Peptide Fragments/pharmacokinetics , Plaque, Amyloid/pathology , Plaque, Amyloid/psychology
9.
J Neurosci ; 35(34): 11862-76, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311769

ABSTRACT

Bexarotene-activated retinoid X receptors (RXRs) ameliorate memory deficits in Alzheimer's disease mouse models, including mice expressing human apolipoprotein E (APOE) isoforms. The goal of this study was to gain further insight into molecular mechanisms whereby ligand-activated RXR can affect or restore cognitive functions. We used an unbiased approach to discover genome-wide changes in RXR cistrome (ChIP-Seq) and gene expression profile (RNA-Seq) in response to bexarotene in the cortex of APOE4 mice. Functional categories enriched in both datasets revealed that bexarotene-liganded RXR affected signaling pathways associated with neurogenesis and neuron projection development. To further validate the significance of RXR for these functions, we used mouse embryonic stem (ES) cells, primary neurons, and APOE3 and APOE4 mice treated with bexarotene. In vitro data from ES cells confirmed that bexarotene-activated RXR affected neuronal development at different levels, including proliferation of neural progenitors and neuronal differentiation, and stimulated neurite outgrowth. This effect was validated in vivo by demonstrating an increased number of neuronal progenitors after bexarotene treatment in the dentate gyrus of APOE3 and APOE4 mice. In primary neurons, bexarotene enhanced the dendritic complexity characterized by increased branching, intersections, and bifurcations. This effect was confirmed by in vivo studies demonstrating that bexarotene significantly improved the compromised dendritic structure in the hippocampus of APOE4 mice. We conclude that bexarotene-activated RXRs promote genetic programs involved in the neurogenesis and development of neuronal projections and these results have significance for the improvement of cognitive deficits. SIGNIFICANCE STATEMENT: Bexarotene-activated retinoid X receptors (RXRs) ameliorate memory deficits in Alzheimer's disease mouse models, including mice expressing human apolipoprotein E (APOE) isoforms. The goal of this study was to gain further insight into molecular mechanisms whereby ligand-activated RXR can affect or restore cognitive functions. We used an unbiased approach to discover genome-wide changes in RXR cistrome (ChIP-Seq) and gene expression profile (RNA-Seq) in response to bexarotene in the cortex of APOE4 mice. Functional categories enriched in both datasets revealed that liganded RXR affected signaling pathways associated with neurogenesis and neuron projection development. The significance of RXR for these functions was validated in mouse embryonic stem cells, primary neurons, and APOE3 and APOE4 mice treated with bexarotene.


Subject(s)
Cell Differentiation/physiology , Dendrites/metabolism , Neurogenesis/physiology , Retinoid X Receptors/metabolism , Tetrahydronaphthalenes/pharmacology , Animals , Bexarotene , Cell Differentiation/drug effects , Cells, Cultured , Dendrites/drug effects , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Retinoid X Receptors/agonists
10.
J Alzheimers Dis ; 41(2): 535-49, 2014.
Article in English | MEDLINE | ID: mdl-24643138

ABSTRACT

Passive amyloid-ß (Aß) vaccination has shown significant effects on amyloid pathology in pre-depositing amyloid-ß protein precursor (AßPP) mice but the results in older mice are inconsistent. A therapeutic effect of LXR and RXR agonists consisting of improved memory deficits and Aß pathology has been demonstrated in different Alzheimer's disease (AD) mouse models. Here, we report the effect of a combination of N-terminal Aß antibody and synthetic LXR agonist T0901317 (T0) on AD-like phenotype of APP23 mice. To examine the therapeutic potential of this combination, the treatment of mice started at 11 months of age, when amyloid phenotype in this model is fully developed, and continued for 50 days. We show that Aß immunization with or without LXR agonist restored the performance of APP23 transgenic mice in two behavior paradigms without affecting the existing amyloid plaques. Importantly, we did not observe an increase of brain microhemorrhage which is considered a significant side effect of Aß vaccination. Target engagement was confirmed by increased Abca1 and ApoE protein level as well as increased ApoE lipidation in soluble brain extract. In interstitial fluid obtained by microdialysis, we demonstrate that immunization and T0 significantly reduced Aß levels, indicating an increased Aß clearance. We found no interaction between the immunotherapy and T0, suggesting no synergism, at least with these doses. The results of our study demonstrate that anti-Aß treatments can ameliorate cognitive deficits in AßPP mice with advanced AD-like phenotype in conjunction with a decrease of Aß in brain interstitium and increase of ApoE lipidation without affecting the existing amyloid plaques.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Antibodies, Monoclonal/therapeutic use , Hydrocarbons, Fluorinated/therapeutic use , Immunization, Passive , Memory Disorders/therapy , Sulfonamides/therapeutic use , ATP Binding Cassette Transporter 1/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloidogenic Proteins/immunology , Animals , Apolipoproteins E/metabolism , Brain/drug effects , Brain/pathology , Brain/physiopathology , Combined Modality Therapy , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Disease Models, Animal , Fear/drug effects , Fear/physiology , Female , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/pathology , Memory Disorders/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Nootropic Agents/therapeutic use , Random Allocation
11.
Neurobiol Dis ; 63: 107-14, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24269917

ABSTRACT

Early growth response gene 1 (Egr1) is a member of the immediate early gene (IEG) family of transcription factors and plays a role in memory formation. To identify EGR1 target genes in brain of Alzheimer's disease (AD) model mice - APP23, we applied chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq). Functional annotation of genes associated with EGR1 binding revealed a set of related networks including synaptic vesicle transport, clathrin-mediated endocytosis (CME), intracellular membrane fusion and transmission of signals elicited by Ca(2+) influx. EGR1 binding is associated with significant enrichment of activating chromatin marks and appears enriched near genes that are up-regulated in the brains of APP23 mice. Among the putative EGR1 targets identified and validated in this study are genes related to synaptic plasticity and transport of proteins, such as Arc, Grin1, Syn2, Vamp2 and Stx6, and genes implicated in AD such as Picalm, Psen2 and App. We also demonstrate a potential regulatory link between EGR1 and its newly identified targets in vivo, since conditions that up-regulate Egr1 levels in brain, such as a spatial memory test, also lead to increased expression of the targets. On the other hand, protein levels of EGR1 and ARC, SYN2, STX6 and PICALM are significantly lower in the brain of adult APP mice than in age-matched wild type animals. The results of this study suggest that EGR1 regulates the expression of genes involved in CME, vesicular transport and synaptic transmission that may be critical for AD pathogenesis.


Subject(s)
Early Growth Response Protein 1/metabolism , Gene Regulatory Networks/genetics , Genome , Nerve Degeneration/genetics , Alzheimer Disease/complications , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , COS Cells , Chlorocebus aethiops , Chromatin Immunoprecipitation , Disease Models, Animal , Endocytosis/genetics , Green Fluorescent Proteins , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration/etiology , Nerve Tissue Proteins/metabolism , Protein Binding/genetics , Signal Transduction/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...