Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 435(13): 168132, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37121395

ABSTRACT

The molecular basis for septin filament assembly has begun to emerge over recent years. These filaments are essential for many septin functions which depend on their association with biological membranes or components of the cytoskeleton. Much less is known about how septins specifically interact with their binding partners. Here we describe the essential role played by the C-terminal domains in both septin polymerization and their association with the BD3 motif of the Borg family of Cdc42 effector proteins. We provide a detailed description, at the molecular level, of a previously reported interaction between BD3 and the NC-interface between SEPT6 and SEPT7. Upon ternary complex formation, the heterodimeric coiled coil formed by the C-terminal domains of the septins becomes stabilized and filament formation is promoted under conditions of ionic strength/protein concentration which are not normally permissible, likely by favouring hexamers over smaller oligomeric states. This demonstrates that binding partners, such as Borg's, have the potential to control filament assembly/disassembly in vivo in a way which can be emulated in vitro by altering the ionic strength. Experimentally validated models indicate that the BD3 peptide lies antiparallel to the coiled coil and is stabilized by a mixture of polar and apolar contacts. At its center, an LGPS motif, common to all human Borg sequences, interacts with charged residues from both helices of the coiled coil (K368 from SEPT7 and the conserved E354 from SEPT6) suggesting a universal mechanism which governs Borg-septin interactions.


Subject(s)
Cytoskeleton , Septins , Humans , Septins/chemistry , Polymerization , Cytoskeleton/metabolism , Protein Domains , Protein Structure, Secondary
2.
Front Cell Dev Biol ; 9: 765085, 2021.
Article in English | MEDLINE | ID: mdl-34869357

ABSTRACT

In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.

SELECTION OF CITATIONS
SEARCH DETAIL
...