Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 9: 903901, 2022.
Article in English | MEDLINE | ID: mdl-35720841

ABSTRACT

Two experiments were conducted to evaluate the effects of digestible sulfur amino acids (SAA) on performance, carcass yield, immunity, and amino acid transporters in broilers fed diets with or without an antibiotic growth promoter (AGP). In experiment 1, a total of 250 1-day-old Cobb500 male chicks were assigned to battery cages with two levels of AGP (0 and 0.05% bacitracin) and five levels of SAA (0.7, 0.8, 0.9, 1.0, and 1.1%) for 21 d. In experiment 2, a total of 900 1-day-old Cobb500 male chicks were assigned to floor pens with two levels of AGP and three levels of SAA for the starter (0.7, 0.8, and 0.9%) or finisher phase (0.52, 0.62, and 0.72%) for 42 d. In experiment 1, from 0 to 7 d, the body weight gain (BWG) was the lowest for birds fed 0.7% SAA. The AGP significantly decreased the feed conversion ratio (FCR), and birds fed 0.9 and 1.1% SAA had significantly lower FCR than 0.7% SAA. From 8 to 14 d, for the AGP-fed birds, the lowest BWG was observed in the 0.7% SAA group. In birds not fed AGP, birds fed 0.8% SAA had higher BWG than 0.7 and 1.1% SAA. Birds fed 0.7% SAA diet had lower feed intake (FI) than 0.8% SAA and higher FCR than 0.8, 0.9, and 1.0% SAA. In experiment 2, from 0 to 21 d, the lowest BWG and the highest FCR were observed in birds fed 0.7% SAA, whereas birds fed 0.9% SAA had the highest BWG and lowest FCR. From 22 to 42 d, FCR was lower for birds fed AGP, and for birds fed 0.72%. Interactions between the factors were found for FI and BWG. The whole thigh and wing weights were the highest for 0.62% SAA, and the pectoralis major weight was higher for birds fed 0.62% SAA than those fed 0.52% SAA. There was an interaction between SAA and AGP for Lat1 (large neutral amino acid transporter) expression, and AGP-fed birds had higher expression of ileal interleukin 1ß (Il-1ß gene). The interleukin 10 (Il-10) expression was upregulated in the ileum. There was an interaction between factors for sodium-dependent neutral amino acid transporter B [0] AT1 (SLC6A19) expression. The results suggested that both AGP and SAA supplementation would affect the growth performance of the broilers.

2.
Animals (Basel) ; 10(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202808

ABSTRACT

Amino acids such as arginine, methionine, and cysteine are the precursors of essential molecules that regulate growth and health, being classified as functional amino acids. This review describes the metabolism of arginine and the sulfur amino acids and how they modulate, directly or indirectly, different tissues. Emphasis is placed on their effects in supporting health during challenging conditions, such as heat stress and Eimeria infection. The use of arginine has been shown to reduce abdominal fat pad in ducks and increase lean tissue and bone mineral density in broilers. Additionally, the sulfur amino acids have been shown to improve bone development and are beneficial during heat stress. The use of L-methionine increased the cortical and trabecular bone mineral densities, in laying hens. Moreover, the dietary inclusion of these amino acids could reduce the damage caused by Eimeria spp. infection by regulating the antioxidant system and cell repair. Understanding how these amino acids can mitigate stressful conditions may provide us novel insights of their use as nutritional strategies to modulate the health status of chickens.

3.
Poult Sci ; 99(9): 4203-4216, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32867964

ABSTRACT

This study was conducted to evaluate graded Eimeria challenge on growth performance, apparent ileal digestibility, gastrointestinal permeability, intestinal morphology, gene expression of tight junction protein, and intestinal lesion scores in broiler chickens. There were 5 groups in this study, including a control and 4 different Eimeria treatment doses. A mixed Eimeria spp. solution with 50,000 Eimeria maxima, 50,000 Eimeria tenella, and 250,000 Eimeria acervulina per milliliter was prepared for the high-dose challenge treatment. The 2-fold serial dilution was used to make the medium-high (25,000 E. maxima; 25,000 E. tenella; 125,000 E. acervulina), the medium-low (12,500 E. maxima; 12,500 E. tenella; 62,500 E. acervulina), and the low challenge dose (6,250 E. maxima; 6,250 E. tenella; 31,250 E. acervulina). A total of three hundred sixty 13-day-old male broiler chickens were randomly allocated into 5 treatments with 6 replicated cages. Growth performance was calculated from 0 to 6 D postinfection (DPI). Intestine lesion was scored on 6 DPI. Gastrointestinal permeability was measured on 3, 5, 6, 7, and 9 DPI. The results indicated significant linear reduction in growth performance, intestinal villi height, and ileal nutrient digestibility in response to the increase of Eimeria challenge dose. Furthermore, gene expression of tight junction protein was linearly upregulated by the increasing challenge doses. Significant linear increases of gastrointestinal permeability were found on 5, 6, and 7 DPI (P < 0.01). On 9 DPI, the gastrointestinal permeability was recovered back to normal level in the challenge groups. In conclusion, the higher Eimeria doses birds received, the more severe intestine damage was observed in several gastrointestinal health parameters. The medium-low or medium-high levels of mixed Eimeria oocysts is suggested as an optimum Eimeria-challenge dose to establish a subclinical challenge model for future studies evaluating nutritional strategies. Moreover, it is recommended to measure gastrointestinal permeability on 5 DPI with higher oocysts doses and 6 DPI when using the lower oocysts doses.


Subject(s)
Coccidiosis , Eimeria , Gastrointestinal Tract , Poultry Diseases , Tight Junctions , Animals , Chickens , Coccidiosis/physiopathology , Coccidiosis/veterinary , Digestion , Gastrointestinal Tract/parasitology , Gastrointestinal Tract/physiopathology , Ilium/metabolism , Intestines/anatomy & histology , Intestines/parasitology , Male , Permeability , Poultry Diseases/parasitology , Poultry Diseases/physiopathology , Tight Junctions/parasitology
4.
Front Vet Sci ; 7: 230, 2020.
Article in English | MEDLINE | ID: mdl-32426385

ABSTRACT

An experiment was conducted to evaluate the effect of different levels of inorganic copper and zinc on growth performance, intestinal permeability, intestinal lesion scores, oocyst shedding, antioxidant properties and bone quality in broilers challenged with Eimeria spp. A total of 360 d-old male Cobb broiler chickens were housed in floor cages for 12 days at the Poultry Research Center. At 12 days of age, birds were placed in grower Petersime batteries and distributed in a completely randomized design with 10 birds per cage, six replicates per treatment, and six treatments. There were six corn-soybean meal-based dietary treatments: non-challenged control (NC), challenged control (CC), 100 ppm Cu (100 Cu), 150 ppm Cu (150 Cu), 80 ppm Zn (80 Zn), and 100 ppm Zn (100 Zn). Broilers received the treatment diets for 9 days (12-20d). Birds, except NC, were challenged with Eimeria maxima (50,000 oocysts/bird), Eimeria tenella (50,000 oocysts/bird), and Eimeria acervulina (250,000 oocysts/bird) on 14d. On 20d, the growth performance was recorded, and one bird/cage was used for analysis of intestinal permeability, antioxidant properties and bone quality. Lesion score was recorded at 20 days of age in eight birds/cage. The means were subjected to ANOVA and, when significant, compared by Duncan's test. Intestinal permeability was significantly improved when birds received the 100 Zn diet (P < 0.05). In addition, lesion scores on duodenum were reduced when broilers received diets 150 Cu as compared to CC diet (P < 0.05). However, growth performance was not positively influenced by inclusion of inorganic minerals as compared to the NC diet. Furthermore, activity of superoxide dismutase and bone quality were not affected, whereas glutathione status was improved with mineral supplementation in all groups. This study showed that Cu and Zn supplementation improves intestinal integrity during the Eimeria spp. infection, suggesting that Cu and Zn supplementation would be a potential strategy to reduce detrimental effects of Eimeria infection in broilers.

SELECTION OF CITATIONS
SEARCH DETAIL
...