Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Behav ; 71(Pt B): 243-249, 2017 06.
Article in English | MEDLINE | ID: mdl-26440280

ABSTRACT

Accumulating evidence from different animal models has contributed to the understanding of the bidirectional comorbidity associations between the epileptic condition and behavioral abnormalities. A strain of animals inbred to enhance seizure predisposition to high-intensity sound stimulation, the Wistar audiogenic rat (WAR), underwent several behavioral tests: forced swim test (FST), open-field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), social preference (SP), marble burying test (MBT), inhibitory avoidance (IAT), and two-way active avoidance (TWAA). The choice of tests aimed to investigate the correlation between underlying circuits believed to be participating in both WAR's innate susceptibility to sound-triggered seizures and the neurobiological substrates associated with test performance. Comparing WAR with its Wistar counterpart (i.e., resistant to audiogenic seizures) showed that WARs present behavioral despair traits (e.g., increased FST immobility) but no evidence of anhedonic behavior (e.g., increased sucrose consumption in SPT) or social impairment (e.g., no difference regarding juvenile exploration in SP). In addition, tests suggested that WARs are unable to properly evaluate degrees of aversiveness (e.g., performance on OFT, EPM, MBT, IAT, and TWAA). The particularities of the WAR model opens new venues to further untangle the neurobiology underlying the co-morbidity of behavioral disorders and epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Subject(s)
Acoustic Stimulation/adverse effects , Avoidance Learning , Disease Models, Animal , Epilepsy, Reflex/psychology , Genetic Predisposition to Disease/psychology , Seizures/psychology , Animals , Avoidance Learning/physiology , Behavior, Animal/physiology , Disease Susceptibility/psychology , Epilepsy, Reflex/genetics , Epilepsy, Reflex/physiopathology , Genetic Predisposition to Disease/genetics , Male , Maze Learning/physiology , Rats , Rats, Wistar , Seizures/genetics , Seizures/physiopathology
2.
Cereb Cortex ; 26(5): 1866-1877, 2016 May.
Article in English | MEDLINE | ID: mdl-25609241

ABSTRACT

Inputting information to the brain through direct electrical microstimulation must consider how underlying neural networks encode information. One unexplored possibility is that a single electrode delivering temporally coded stimuli, mimicking an asynchronous serial communication port to the brain, can trigger the emergence of different brain states. This work used a discriminative fear-conditioning paradigm in rodents in which 2 temporally coded microstimulation patterns were targeted at the amygdaloid complex. Each stimulus was a binary-coded "word" made up of 10 ms bins, with 1's representing a single pulse stimulus: A-1001111001 and B-1110000111. During 3 consecutive retention tests (i.e., day-word: 1-B; 2-A, and 3-B), only binary-coded words previously paired with a foot-electroshock elicited proper aversive behavior. To determine the neural substrates recruited by the different stimulation patterns, c-Fos expression was evaluated 90 min after the last retention test. Animals conditioned to word-B, after stimulation with word-B, demonstrated increased hypothalamic c-Fos staining. Animals conditioned to word-A, however, showed increased prefrontal c-Fos labeling. In addition, prefrontal-cortex and hypothalamic c-Fos staining for, respectively, word-B- and word-A-conditioned animals, was not different than that of an unpaired control group. Our results suggest that, depending on the valence acquired from previous learning, temporally coded microstimulation activates distinct neural networks and associated behavior.


Subject(s)
Amygdala/physiology , Conditioning, Classical/physiology , Electric Stimulation/methods , Neurons/physiology , Amygdala/metabolism , Animals , Behavior, Animal/physiology , Electroshock , Fear , Male , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar
3.
Neurosci Lett ; 597: 154-8, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25936592

ABSTRACT

Increasing body of evidence suggests that inflammatory and neurotrophic factors might be important for epileptogenesis. Most animal studies demonstrated altered levels of these mediators in drug-induced models of seizures and epilepsy. In the present study, we investigated the production of cytokines and a neurotrophin in the brain of Wistar Audiogenic Rats (WAR), a genetic model of epilepsy, stimulated with high-intensity sound. Four hours after stimulation, animals were decapitated and the hippocampus, inferior colliculus, striatum and cortex were removed for evaluation of the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and brain derived neurotrophic factor (BDNF). All the cytokines and BDNF levels were increased in the cortex. Increased levels of TNF-α and IL-6 were also observed in the striatum. Finally, TNF-α also increased in the inferior colliculus after the seizures induced by high-intensity sound. Although different studies have demonstrated that the levels of cytokines and BDNF increase in animal models of epilepsy induced by chemical stimuli, we provided here evidence that these mediators are also increased in WAR, a genetic model of epilepsy. Thus, the observed increase in these mediators might be involved in the pathophysiology of epilepsy.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cytokines/metabolism , Seizures/metabolism , Acoustic Stimulation , Animals , Brain/metabolism , Interleukin-1beta/metabolism , Male , Rats, Wistar , Seizures/etiology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...