Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17189, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483770

ABSTRACT

Thousands of tons of residual lignocellulosic biomass are produced and discarded by agroindustries in the Amazon. These biomasses could be harnessed and used in the preparation of activated carbon, in view of the growing demand for this product with high added value, however, little is known about their characteristics, in addition to their potential as precursors of activated carbon. Therefore, the aim of this work was to evaluate the potential of four different biomasses in the preparation and quality of activated carbon. Residues from the processing of the fruits of acai, babassu, Brazil nut, and oil palm were collected, characterized, carbonized, physically activated with CO2, and characterized. The contents of the total extractives, insoluble lignin, minerals, holocellulose, and elemental (CHNS-O) were analyzed. The surface area and surface morphology were determined from the AC produced, and adsorption tests for methylene blue and phenol were performed. The four biomasses showed potential for use in the preparation of CA; the residues presented high contents of lignin (21.83-55.76%) and carbon (46.49-53.79%). AC were predominantly microporous, although small mesopores could be observed. The AC had a surface area of 569.65-1101.26 m2 g-1, a high methylene blue (93-390 mg g-1), and phenol (159-595 mg g-1) adsorption capacities. Babassu-AC stood out compared to the AC of the other analyzed biomasses, reaching the best results.

2.
Polymers (Basel) ; 12(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630684

ABSTRACT

The specificity of activated carbon (AC) can be targeted by pretreatment of the precursors and/or activation conditions. Piassava (Leopoldinia piassaba and Attalea funifera Martius) are fibrous palms used to make brushes, and other products. Consolidated harvest and production residues provide economic feasibility for producing AC, a value-added product from forest and industrial residues. Corona electrical discharge and extraction pretreatments prior to AC activation were investigated to determine benefits from residue pretreatment. The resulting AC samples were characterized using elemental analyses and FTIR and tested for efficacy using methylene blue and phenol. All resulting AC had good adsorbent properties. Extraction as a pretreatment improved functionality in AC properties over Corona electrical discharge pretreatment. Due to higher lignin content, AC from L. piassaba had better properties than that from A. funifera.

SELECTION OF CITATIONS
SEARCH DETAIL
...