Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 203: 111761, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31896050

ABSTRACT

The combination of different colors from light-emitting diodes (LEDs) may influence growth and production of secondary metabolites in plants. In the present study, the effect of light quality on morphophysiology and content of 20-hydroxyecdysone (20E), a phytoecdysteroid, was evaluated in accessions of an endangered medicinal species, Pfaffia glomerata, grown in vitro. Two accessions (Ac22 and Ac43) were cultured in vitro under three different ratios of red (R) and blue (B) LEDs: (i) 1R:1B, (ii) 1R:3B, and (iii) 3R:1B. An equal ratio of red and blue light (1R:1B) increased biomass accumulation, anthocyanin content, and 20E production (by 30-40%). Moreover, 1R:1B treatment increased the size of vascular bundles and vessel elements, as well as strengthened xylem lignification and thickening of the cell wall of shoots. The 1R:3B treatment induced the highest photosynthetic and electron transport rates and enhanced the activity of oxidative stress-related enzymes. Total Chl content, Chl/Car ratio, and NPQ varied more by accession type than by light source. Spectral quality affected primary metabolism differently in each accession. Specifically, in Ac22 plants, fructose content was higher under 1R:1B and 1R:3B treatments, whereas starch accumulation was higher under 1R:3B, and sucrose under 3R:1B. In Ac43 plants, sugars were not influenced by light spectral quality, but starch content was higher under 3R:1B conditions. In conclusion, red and blue LEDs enhance biomass and 20E production in P. glomerata grown in vitro.


Subject(s)
Amaranthaceae/radiation effects , Ecdysterone/analysis , Light , Amaranthaceae/growth & development , Amaranthaceae/metabolism , Anthocyanins/analysis , Biomass , Carotenoids/analysis , Catalase/metabolism , Chlorophyll/analysis , Chromatography, High Pressure Liquid , Plant Leaves/chemistry , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Stems/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Plants, Medicinal/radiation effects , Starch/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...