Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biol Lett ; 18(2): 20210583, 2022 02.
Article in English | MEDLINE | ID: mdl-35104429

ABSTRACT

Puffer and porcupine fishes (families Diodontidae and Tetraodontidae, order Tetradontiformes) are known for their extraordinary ability to triple their body size by swallowing and retaining large amounts of seawater in their accommodating stomachs. This inflation mechanism provides a defence to predation; however, it is associated with the secondary loss of the stomach's digestive function. Ingestion of alkaline seawater during inflation would make acidification inefficient (a potential driver for the loss of gastric digestion), paralleled by the loss of acid-peptic genes. We tested the hypothesis of stomach inflation as a driver for the convergent evolution of stomach loss by investigating the gastric phenotype and genotype of four distantly related stomach inflating gnathostomes: sargassum fish, swellshark, bearded goby and the pygmy leatherjacket. Strikingly, unlike in the puffer/porcupine fishes, we found no evidence for the loss of stomach function in sargassum fish, swellshark and bearded goby. Only the pygmy leatherjacket (Monochanthidae, Tetraodontiformes) lacked the gastric phenotype and genotype. In conclusion, ingestion of seawater for inflation, associated with loss of gastric acid secretion, is restricted to the Tetraodontiformes and is not a selective pressure for gastric loss in other reported gastric inflating fishes.


Subject(s)
Perciformes , Stomach , Animals , Digestion , Fishes/genetics , Humans , Seawater
2.
Prog Lipid Res ; 86: 101157, 2022 04.
Article in English | MEDLINE | ID: mdl-35104467

ABSTRACT

Marine ecosystems are rich in "omega-3" long-chain (C20-24) polyunsaturated fatty acids (LC-PUFA). Their production has been historically accepted to derive mostly from marine microbes. This long-standing dogma has been challenged recently by the discovery that numerous invertebrates, mostly with an aquatic life-style, have the enzyme machinery necessary for the de novo biosynthesis of polyunsaturated fatty acids (PUFA) and, from them, LC-PUFA. The key breakthrough was the detection in these animals of enzymes called "methyl-end desaturases" enabling PUFA de novo biosynthesis. Moreover, other enzymes with pivotal roles in LC-PUFA biosynthesis, including front-end desaturases and elongation of very long- chain fatty acids proteins, have been characterised in several non-vertebrate animal phyla. This review provides a comprehensive overview of the complement and functions of these gene/protein families in aquatic animals, particularly invertebrates and fish. Therefore, we expand and re-define our previous revision of the LC-PUFA biosynthetic enzymes present in chordates to animals as a whole, discussing how key genomic events have determined the diversity and distribution of desaturase and elongase genes in different taxa. We conclude that both invertebrates and fish display active, but markedly different, LC-PUFA biosynthetic gene networks that result from a complex evolutionary path combined with functional diversification and plasticity.


Subject(s)
Fatty Acid Desaturases , Fatty Acids, Omega-3 , Animals , Ecosystem , Fatty Acid Desaturases/genetics , Fatty Acid Elongases/genetics , Fatty Acids, Unsaturated , Fishes/genetics
3.
J Hazard Mater ; 358: 508-511, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29731175

ABSTRACT

Biological control of key processes, such as development and reproduction, is largely ascribed to a superfamily of ligand-dependent and independent transcription factors named Nuclear Receptors (NRs). Given their ability to accommodate ligands, NRs are prime targets of man-made compounds that mimic or antagonise the action of endogenous ligands. Accordingly, NRs occupy a prominent role in OECD and EPA guidelines for testing and assessment of Endocrine disrupting chemicals (EDCs). Although NR assays are already a key instrument in the OECD Conceptual Framework for Testing and Assessment of EDCs, the focus is mostly on vertebrate NRs. Here, we address the chief knowledge gaps in the field. More specifically, we (1) verify the growing availability of genomes/transcriptome projects, (2) highlight gaps in the identification and characterization of metazoan NR and in the establishment of (3) life cycle and (4) toxicity testing protocols. An overall bias towards vertebrates and selected invertebrate groups, notably Arthropoda, Annelida and Mollusca, was observed. Hence, if we aim to improve risk assessment of EDCs and emerging pollutants at an ecosystems scale, and understand their mode of action (MOA), we must establish a framework to include a broad phylogenetic sampling of Metazoans.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Hazardous Substances/toxicity , Receptors, Cytoplasmic and Nuclear , Toxicity Tests/methods , Animals , Biological Assay , Databases, Factual , Ligands , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Risk Assessment , Species Specificity
4.
J Fish Biol ; 92(4): 1051-1064, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29465800

ABSTRACT

The expression pattern of genes coding for enzymes of the retinoic acid (RA) synthetic and degradation pathways was characterized in adult female zebrafish Danio rerio. Females were conditioned until maturation and post-spawn expression dynamics were determined. A striking upregulation of cyp26b1, but not cyp26a1, was observed following egg deposition, decreasing to initial levels during recovery. A similar, yet lower, fluctuation was observed for aldh1a2 and rdh10a, the enzymes participating in the two-step RA biosynthesis cascade. The present work highlights the dynamics of the adult D. rerio oogenesis and uncovers novel, yet elusive, metabolic contributors. Possible compartmentalized roles for the different gene paralogue isoforms are discussed.


Subject(s)
Gonads/metabolism , Oogenesis , Retinal Dehydrogenase/metabolism , Tretinoin/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Female , Retinal Dehydrogenase/genetics , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
5.
J Toxicol Environ Health A ; 80(9): 465-476, 2017.
Article in English | MEDLINE | ID: mdl-28682217

ABSTRACT

Nuclear receptors (NR) are involved in the regulation of several metabolic processes and it is well known that these constituents may be modulated by different chemicals classes, including pharmaceuticals that may activate or antagonize NR. In mammals, some pharmaceuticals modulate the transcription of pregnane X receptor, Pxr, peroxisome proliferator activated receptor, Ppars, and aryl hydrocarbon receptor, Ahr, affecting mRNA expression of genes belonging to various regulatory pathways, including lipid metabolism and detoxification mechanisms. The aim of this study was to determine the effects of simvastatin (SIM), an anticholesterolemic drug, on selected NR and AhR mRNA transcription levels during zebrafish early development. Embryos were collected at different development stages (0, 2, 6, 14, 24, 48, and 72 hr post fertilization (hpf)) and mRNA of all target NR was detected at all time points. Embryos (1 and 24 hpf) were exposed to different concentrations of SIM (5 or 50 µg/L) in two differing assays with varying exposure times (2 or 80 hr). The transcription levels of ahr2, raraa, rarab, rarga, pparαa, pparß1, pparγ, pxr, rxraa, rxrab, rxrbb, rxrga, rxrgb, as well as levels of cholesterol (Chol) were measured after exposure. SIM exerted no marked effect on Chol levels, and depending upon exposure duration mRNA levels of NR and AhR either increased or decreased. After 2 hr SIM treatment in 24 hpf embryos, transcription of ppars, pxr, and ahr was up-regulated, while after 80 hr mRNA levels of pxr and ahr were decreased with no marked changes in ppars. Data demonstrate that SIM produced alterations in gene expression of NR which are involved in varying physiological functions and that may disturb regulation of different physiological processes which might impair fish survival and ecosystems regeneration.


Subject(s)
Embryo, Nonmammalian/drug effects , Gene Expression Regulation, Developmental/drug effects , Receptors, Cytoplasmic and Nuclear/drug effects , Simvastatin/pharmacology , Zebrafish/genetics , Animals
6.
Sci Rep ; 6: 33954, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703170

ABSTRACT

Carbonic anhydrase plays a key role in CO2 transport, acid-base and ion regulation and metabolic processes in vertebrates. While several carbonic anhydrase isoforms have been identified in numerous vertebrate species, basal lineages such as the cyclostomes have remained largely unexamined. Here we investigate the repertoire of cytoplasmic carbonic anhydrases in the sea lamprey (Petromyzon marinus), that has a complex life history marked by a dramatic metamorphosis from a benthic filter-feeding ammocoete larvae into a parasitic juvenile which migrates from freshwater to seawater. We have identified a novel carbonic anhydrase gene (ca19) beyond the single carbonic anhydrase gene (ca18) that was known previously. Phylogenetic analysis and synteny studies suggest that both carbonic anhydrase genes form one or two independent gene lineages and are most likely duplicates retained uniquely in cyclostomes. Quantitative PCR of ca19 and ca18 and protein expression in gill across metamorphosis show that the ca19 levels are highest in ammocoetes and decrease during metamorphosis while ca18 shows the opposite pattern with the highest levels in post-metamorphic juveniles. We propose that a unique molecular switch occurs during lamprey metamorphosis resulting in distinct gill carbonic anhydrases reflecting the contrasting life modes and habitats of these life-history stages.


Subject(s)
Carbonic Anhydrases , Cytoplasm , Fish Proteins , Gene Expression Regulation, Enzymologic/physiology , Petromyzon , Animals , Carbon Dioxide/metabolism , Carbonic Anhydrases/biosynthesis , Carbonic Anhydrases/genetics , Cytoplasm/enzymology , Cytoplasm/genetics , Fish Proteins/biosynthesis , Fish Proteins/genetics , Gills/enzymology , Petromyzon/genetics , Petromyzon/metabolism
7.
Gen Comp Endocrinol ; 225: 142-148, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26597622

ABSTRACT

Germ cell commitment and meiosis initiation are among the multitude of physiological roles of retinoic acid (RA) in vertebrates. Acting via receptor-mediated transcription, RA induces the expression of meiotic factors, triggering meiosis. Contrasting with vertebrates, invertebrate RA metabolism is scarcely understood. Still, some physiological processes appear to be conserved. Here we set to evaluate the role of retinoids in the gonad maturation process of the marine gastropod Patella vulgata. We found that retinoid concentration in gonadal tissue, namely RA, varies between breeding and resting specimens, with maxima attained in the latter. Additionally, we isolated and quantified the expression of both the retinoic acid receptor (RAR) and the retinoid X receptor (RXR) in gonads. In view of the stability of retinoid receptor expression, we suggest that the balance of RA levels operates through the enzymatic control of synthetic and catabolic processes. Overall, the reported data are supportive for a developmental role of RA during gonadal maturation in P. vulgata, which should be addressed in other protostome lineages.


Subject(s)
Gastropoda/metabolism , Gonads/metabolism , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors/metabolism , Retinoids/metabolism , Animals , Carrier Proteins , Gene Expression , Reproduction/physiology , Tretinoin/metabolism
8.
Aquat Toxicol ; 164: 155-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25974001

ABSTRACT

Fibrates and other lipid regulator drugs are widespread in the aquatic environment including estuaries and coastal zones, but little is known on their chronic effects on non-target organisms as marine fish. In the present study, turbot juveniles were exposed to the PPARα model agonist WY-14,643 for 21 days by repeated injections at the concentrations of 5mg/kg (lo-WY) and 50mg/kg (hi-WY), and samples taken after 7 and 21 days. Enzyme activity and mRNA expression of palmitoyl-CoA oxidase and catalase in the liver were analyzed as first response, which validated the experiment by demonstrating interactions with the peroxisomal fatty acid oxidation and oxidative stress pathways in the hi-WY treatment. In order to get mechanistic insights, alterations of plasma lipids (free cholesterol, FC; HDL associated cholesterol, C-HDL; triglycerides, TG; non-esterified fatty acids, NEFA) and hepatic mRNA expression of 17 genes involved in fatty acid and lipid metabolism were studied. The exposure to hi-WY reduced the quantity of plasma FC, C-HDL, and NEFA. Microsomal triglyceride transfer protein and apolipoprotein E mRNA expression were higher in hi-WY, and indicated an increased formation of VLDL particles and energy mobilization from liver. It is speculated that energy depletion by PPARα agonists may contribute to a higher susceptibility to environmental stressors.


Subject(s)
Fish Proteins/genetics , Flatfishes/physiology , Gene Expression Regulation/drug effects , Lipid Metabolism , Pyrimidines/toxicity , Animals , Flatfishes/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipids/blood , Liver/drug effects , Liver/enzymology , Oxidation-Reduction , PPAR alpha/agonists , PPAR alpha/genetics , Water Pollutants, Chemical/toxicity
9.
Mar Genomics ; 10: 17-25, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23517768

ABSTRACT

Thorough evaluation of normalization approaches is a fundamental aspect in real-time quantitative RT-PCR experiments to avoid artificial introduced intergroup variations. In our study, we tested three normalization strategies in an experimental data set derived from a toxicological exposure of Scophthalmus maximus to the peroxisome proliferator-activated receptor alpha (PPARα) agonist WY-14643. Juvenile turbots were exposed by repeated injections to 5 mg or 50 mg WY-14643/kg, and liver samples were taken at day 1, 7 and 21. Specifically, the mRNA expression of peroxiredoxin 5 (prdx5) was normalized to the cDNA content, to the mRNA expression of single reference genes (b-actin, b-act; elongation factor 1 α, ef1a; glyceraldehyde-3-phosphate dehydrogenase, gapdh; ribosomal protein L8, rpl8; tata-box binding protein, tbp; tubulin beta 2C chain, tubb2c; ubiquitin-conjugating enzyme E2L 3, ub2l3) or to a combination of multiple reference genes using geNorm, BestKeeper or NormFinder algorithms. Four single reference genes (ef1a, rpl8, tubb2c, tbp) did not show any significant differences between the treatment groups over time, while significant intergroup variations were observed for cDNA content, gapdh, b-act and ub2l3. The normalization of prdx5 to the valid (not altered) single reference genes led to significant up-regulated (prdx5/rpl8), not-regulated (prdx5/ef1a; prdx5/tbp) or down-regulated (prdx5/tubb2c) mRNA expression pattern. The multiple reference gene approaches resulted in different rankings and combinations of the most stable expressed reference genes (geNorm: ef1a>rpl8>b-act; BestKeeper: ub2l3>gapdh>ef1a; NormFinder: b-act>ef1a). However, the normalization with the three multiple reference gene procedures demonstrated consistent expression pattern with a significant up-regulation of prdx5 in response to the higher concentration after 21 days. Concluding, even if not yet established as "gold" standard for expression profiling in environmental toxicology or physiology using freshwater or marine fish models, the multiple reference gene approach is recommended, since it eliminates any biased results, which represented the major flaw of single reference genes.


Subject(s)
Flatfishes/genetics , Gene Expression Regulation/physiology , Real-Time Polymerase Chain Reaction/methods , Animals , DNA, Complementary/genetics , DNA, Complementary/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Comp Biochem Physiol B Biochem Mol Biol ; 164(4): 247-58, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23380517

ABSTRACT

Dietary long chain polyunsaturated fatty acids (FA) have been recognized of crucial importance in early development of vertebrates, contributing to the impressive morphological and physiological changes both as building blocks and to energy production. The importance of lipids along development depends on ontogenetic, phylogenetic and environmental parameters. The expression patterns of FA metabolism genes have not been characterized in developing fish embryos nor compared to lipid class profiles. Full lipid metabolism only occurred after hatching, as revealed by alterations in lipid profiles and FA gene expression. Nonetheless, transcriptional changes of some FA genes were already present in embryos at notochord formation. Many genes displayed an expression profile opposed to the decrease of lipids along the development, while others responded solely to starvation. Transcription of most genes involved in FA metabolism had a strong correlation to PPARs' mRNA levels (α1, α2, ß, γ). The comparison of mRNA expression of the genes with the lipid profiles produced new insights into the FA metabolism and regulation during the development of turbot larvae, providing the basis for future studies including comparative approaches with other vertebrate species.


Subject(s)
Flatfishes/metabolism , Lipid Metabolism/genetics , Lipids/chemistry , Ovum/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Animals , Fatty Acids/genetics , Fatty Acids/metabolism , Flatfishes/genetics , Larva/genetics , Larva/metabolism , Lipids/genetics , Transcriptome
11.
Fish Physiol Biochem ; 39(4): 1043-55, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23266856

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of lipid and carbohydrate metabolism and can be activated either by natural ligands as fatty acids or by synthetic ligands including several environmental chemicals. In this study, two PPARα isoforms (α1 and α2) were analyzed in turbot (Scophthalmus maximus) for a different tissue distribution. PPARα1 was ubiquitously expressed, while the PPARα2 was predominantly expressed in the heart. Following this result, turbot juveniles were exposed by injection to a synthetic selective PPARα agonist, WY-14643, for 14 days. Suppression subtractive hybridization (SSH) was performed with pools of heart samples of control and exposed fish to get insights into PPARα-regulated genes in the heart of juvenile turbot. Four genes were positively identified in the forward-subtracted and 12 genes in the reverse-subtracted cDNA SSH library, corresponding to the down-regulated and up-regulated genes in response to the WY-14643 treatment, respectively. The confirmation of these results in individual samples of juvenile turbot exposed to WY-14643 revealed a statistically significant mRNA induction of two cardiac muscle proteins (myosin light chain 2 and tropomyosin 4), which were shown to be involved in heart contraction and heartbeat regulation in other teleost species. Herewith, we showed for the first time that PPARα2 is predominantly expressed in the heart and that a PPARα agonist can induce the mRNA expression of cardiac muscle proteins in teleosts.


Subject(s)
Cardiac Myosins/metabolism , Flatfishes/metabolism , Myocardium/metabolism , Myosin Light Chains/metabolism , PPAR alpha/genetics , Pyrimidines , Tropomyosin/metabolism , Animals , Flatfishes/genetics , Gene Expression Regulation/drug effects , PPAR alpha/agonists , PPAR alpha/biosynthesis , Protein Isoforms/metabolism , Pyrimidines/pharmacology , Real-Time Polymerase Chain Reaction , Transcription, Genetic
12.
Evol Dev ; 5(5): 459-65, 2003.
Article in English | MEDLINE | ID: mdl-12950625

ABSTRACT

Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and AmphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis-duplication events of genes early in animal evolution. A trans-duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes.


Subject(s)
Chordata, Nonvertebrate/genetics , Chromosome Mapping , Evolution, Molecular , Genes, Homeobox/genetics , Models, Genetic , Animals , DNA Probes , In Situ Hybridization, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...